


DEUTERATED INTERNAL STANDARD PRODUCT INFORMATION SHEET

NMIA D548: d₃-Epitestosterone

Report ID: D548.2026.01

Chemical Formula: C₁₉H₂₅D₃O₂

Molecular Weight: 291.4 g/mol

Property value

Batch No.	CAS No.	Purity estimate
97-000055	171199-96-5	98.9 ± 1.0%

IUPAC name: (17α)-17-Hydroxy(16,16,17-²H₃)androst-4-en-3-one

Expiration of certification: The property values are valid till 03 February 2036, ten years from the date of certification provided the **unopened** material is handled and stored in accordance with the recommendations below. The material as issued in the unopened container and stored as recommended below should be suitable for use beyond this date, subject to confirmation of batch stability from the issuing body. The shelf life does not apply to ampoules that have been opened. In such cases it is recommended that the end-user conduct their own in-house stability trials.

Description: White crystalline powder prepared by synthesis and certified for identity and purity by NMI Australia. Packaged in amber glass bottles with a septum and crimped aluminium cap or screw top cap.

Intended use: The isotopic purity of this material is an estimate only. This material should be considered for use as an internal standard only.

Instructions for use: Equilibrate the bottled material to room temperature before opening.

Recommended storage: When not in use, this material should be stored at or below 4 °C in a closed container in a dry, dark area.

Stability: This material has demonstrated stability over a minimum period of five years. The long-term stability of the compound in solution has not been examined.

Homogeneity assessment: The homogeneity of the material was assessed using purity assay by GC-FID on seven randomly selected ampoules of the material. The material was judged to be sufficiently homogeneous at this level of sampling as the variation in analysis results between samples was not significantly different at a 95% confidence level from that observed on repeat analysis of the same sample.

Safety: Treat as a hazardous substance. Use appropriate work practices when handling to avoid skin or eye contact, ingestion or inhalation of dust. Refer to the provided safety data sheet.

S. R. Davies

Dr Stephen R. Davies,
Team Leader,
Chemical Reference Materials, NMI.
9 February 2026.

This report supersedes any issued prior to 09 February 2026.

NATA Accreditation No. 198 / Corporate Site No. 14214.

Legal notice: Terms and Conditions associated with the provision of this reference material can be found on the NMIA website.

Characterisation Report:

The identity was confirmed by a range of spectroscopic techniques, NMR, IR and MS. The purity value was obtained by mass balance from a combination of traditional analytical techniques, including GC-FID, thermogravimetric analysis, Karl Fischer analysis and ^1H NMR spectroscopy. The purity value is calculated as per Equation 1.

$$\text{Purity} = (100 \% - I_{ORG}) \times (100 \% - I_{VOL} - I_{NVR}) \quad \text{Equation 1}$$

I_{ORG} = Organic impurities of related structure, I_{VOL} = volatile impurities, I_{INVR} = non-volatile residue.

Supporting evidence is provided by qualitative elemental microanalysis.

The main component of this material is d4-androsterone- β -glucuronide. d3-, d2-, d1- and d0-Androsterone- β -glucuronide are also present. The stated chemical purity of the analyte represents the combined mass fractions of deuterated (d4, d3, d2 and d1) and d0-androsterone- β -glucuronide in the material.

Isotopic Purity: $d_4 \approx 89\% \quad [= d_4/(d_4 + d_3 + d_2 + d_1 + d_0) \times 100]$
 $d_0 < 0.2\% \quad [= d_0/(d_4 + d_3 + d_2 + d_1 + d_0) \times 100]$

HPLC: Method: Peak area percentage of total > 99.9% (3 samples)
 Column: Alltima C-18, 5 μ m (4.6 mm \times 150 mm)
 Mobile Phase: Acetonitrile/water (50:50)
 Flow Rate: 0.8 mL/min
 Detector: 240 nm

Karl Fischer analysis: Moisture content < 0.2% mass fraction (February 2008, March 2017 & February 2026)

Thermogravimetric analysis: Non volatile residue < 0.2% mass fraction (April 1999 & February 2008). The volatile content (e.g. organic solvents and/or water) could not be determined because of the inherent volatility of the material.

Spectroscopic and other characterisation data

GC-MS:	Parent compound: Instrument: Columns: Program: Injector: Transfer line temp: <i>Bis</i> -TMS derivative: Instrument Columns: Program: Injector: Transfer line temp:	HP6890/5973 HP Ultra 2, 17 m x 0.22 mm I.D. x 0.11 μ m 190 °C (1 min), 12 °C/min to 300 °C (3 min) 280 °C Splitless injection 300 °C Carrier: Helium, 1.0 mL/min HP6890/5973 HP Ultra 1, 17 m x 0.22 mm I.D. x 0.11 μ m 170 °C (1 min), 3 °C/min to 234 °C, 10 °C/min to 265 °C (3 min) 280 °C Splitless injection 300 °C Carrier: Helium, 1.0 mL/min
		The retention times of the parent compound and <i>bis</i> -TMS derivative are reported with the major peaks in the mass spectra. The latter are reported as mass/charge ratios and (in brackets) as a percentage relative to the base peak.
	Parent (5.2 min): <i>Bis</i> -TMS (10.7 min):	291 (M ⁺ , 50), 276 (7), 273 (9), 249 (27), 231 (46), 149 (56), 124 (100) <i>m/z</i> . 435 (M ⁺ , 100), 420 (9), 330 (5), 208 (8), 73 (55) <i>m/z</i> .
		The <i>bis</i> -TMS derivative of d ₃ -epitestosterone co-elutes with a comparison sample of silylated unlabelled epitestosterone under these conditions. The fragmentation pattern matches published data for the <i>bis</i> -TMS derivative of d ₃ -epitestosterone.
GC-MS (ctd):	Deuteration yield by SIM analysis of the <i>bis</i> -TMS derivative, mean of 3 samples: Instrument Column: Program: Injector: Transfer line temp: SIM ions quantified (deuteration state, % rel. to d ₃ -epitestosterone <i>bis</i> -TMS at 435 <i>m/z</i> .) 432 (d ₀ , 0), 433 (d ₁ , 1), 434 (d ₂ , 6), 435 (d ₃ , 100)	HP6890/5973 HP Ultra 1, 17 m x 0.22 mm I.D. x 0.11 μ m 170 °C, 3 °C/min to 234 °C, 10 °C/min to 265 °C (3 min) 280 °C Split ratio: 15/1 300 °C Carrier: Helium 432 (d ₀ , 0), 433 (d ₁ , 1), 434 (d ₂ , 6), 435 (d ₃ , 100)
		Results are uncorrected for potential small contributions due to [M-H] ⁺ , [M-2H] ⁺ and ¹³ C isotope peaks of partially labelled steroids.
TLC:	Conditions:	Kieselgel 60F ₂₅₄ . Chloroform/ethyl acetate (80:20) Single spot observed, R _f = 0.22 (3 samples)
IR:	Instrument: Range: Peaks:	FT-IR, Biorad WIN FTS40 4000-400 cm ⁻¹ , KBr pellet 3420, 1656, 1610, 1381, 1231, 1188, 1108 cm ⁻¹ Weak, broad absorptions at 2200 and 2150 cm ⁻¹
¹ H NMR:	Instrument: Field strength: Solvent: Spectral data:	Bruker DMX-500 500 MHz CDCl ₃ δ 0.69 (3H, s), 1.17 (3H, s), 5.71 (1H, s) ppm
		As a result of successful deuteration, no signals observed due to hydrogen at 16 α -, 16 β - or 17 β -position.
² H NMR:	Instrument: Field strength: Solvent: Spectral data:	Bruker ACF-300 46 MHz CHCl ₃ δ 1.47 (1D, 16 β -D), 2.16 (1D, 16 α -D), 3.76 (1D, 17 β -D) ppm
¹³ C NMR:	Instrument: Field strength: Solvent: Spectral data:	Bruker DMX-500 125 MHz CDCl ₃ δ 16.8, 17.3, 20.5, 24.2, 31.1, (31.5), 32.2, 32.8, 33.8, 35.7, 35.8, 38.6, 44.9, 48.1, 53.5, (79.0), 123.7, 171.2, 199.4 ppm
		As a result of successful deuteration, signals due to C-16 (31.5 ppm) and C-17 (79.0 ppm) are highly attenuated multiplets.
Melting point:		219-220 °C
Microanalysis:	Found: Calculated:	C = 78.3%, H/D = 11.0% C = 78.3%, H/D = 10.7% (Calculated for C ₁₉ H ₂₅ D ₃ O ₂)

