

National Measurement Institute

CERTIFIED REFERENCE MATERIAL CERTIFICATE OF ANALYSIS

NMIA D1017: 2,5-Dimethoxy-3,4-dimethylphenylethylamine hydrochloride

Report ID: D1017.2017.04

Chemical Formula: C₁₂H₁₉NO₂.HCl

Molecular Weight: 245.8 g/mol (HCl), 209.3 g/mol (base)

Certified value

Batch No.	CAS No.	Purity (mass fraction)
14-D-16	327175-14-4 (HCI) 207740-18-9 (base)	96.9 ± 1.9%

The uncertainty has been calculated according to ISO Guide 35 and is stated at the 95% confidence limit (k = 2).

IUPAC name: 2-(2,5-Dimethoxy-3,4-dimethylphenyl)ethanamine hydrochloride (1:1).

Expiration of certification: The property values are valid till 13 April 2020, i.e. three years from the date of re-certification provided the **unopened** material is handled and stored in accordance with the recommendations below. The material as issued in the unopened container and stored as recommended below should be suitable for use beyond this date, subject to confirmation of batch stability from the issuing body. The expiry date/shelf life does not apply to sample bottles that have been opened. In such cases it is recommended that the end-user conduct their own in-house stability trials.

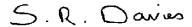
Description: White powder prepared by synthesis, and certified for identity and purity by NMIA. Packaged in amber glass bottles with a septum and crimped aluminium cap or screw top cap.

Intended use: This certified reference material is suitable for use as a primary calibrator.

Instructions for use: Equilibrate the bottled material to room temperature before opening.

Recommended storage: When not in use this material should be stored at or below 25 °C in a closed container in a dry, dark area.

Metrological traceability: The certified purity value is traceable to the SI unit for mass (kg) through Australian national standards via balance calibration. In the mass balance approach all impurities are quantified as a mass fraction and subtracted from 100%.


Stability: This material has demonstrated stability over a minimum period of three years. The measurement uncertainty at the 95% confidence interval includes a stability component which has been estimated from annual stability trials. The long-term stability of the compound in solution has not been examined.

Homogeneity assessment: The homogeneity of the material was assessed using purity assay by GC-FID on seven randomly selected 1-2 mg sub samples of the material. The material was judged to be sufficiently homogeneous at this level of sampling as the variation in analysis results between samples was not significantly different at a 95% confidence level from that observed on repeat analysis of the same sample.

Safety: Treat as a hazardous substance. Use appropriate work practices when handling to avoid skin or eye contact, ingestion or inhalation of dust. Refer to the provided safety data sheet.

2,5-Dimethoxy-3,4-dimethylphenylethylamine hydrochloride

Report ID: D1017.2017.04

Dr Stephen R. Davies, Team Leader, Chemical Reference Materials, NMI. 21 September 2022

This report supersedes any issued prior to 21 September 2022.

NATA Accreditation No. 198 / Corporate Site No. 14214.

Legal notice: Terms and Conditions associated with the provision of this reference material can be found on the NMIA website.

Report ID: D1017.2017.04

Characterisation Report:

The identity was confirmed by a range of spectroscopic techniques, NMR, IR and MS. The certified purity value was obtained by mass balance from a combination of traditional analytical techniques, including GC-FID, thermogravimetric analysis, Karl Fischer analysis and ¹H NMR spectroscopy. The purity value is calculated as per Equation 1.

Purity = $(100 \% - I_{ORG}) \times (100 \% - I_{VOL} - I_{NVR})$

Equation 1

I_{ORG} = Organic impurities of related structure, I_{VOL} = volatile impurities, I_{NVR} = non-volatile residue.

Supporting evidence is provided by qualitative headspace GC-MS analysis of occluded solvents and elemental microanalysis.

GC-FID: Instrument: Varian CP-3800

> Column: HP-5, 30 m \times 0.32 mm I.D. \times 0.25 μm

60 °C (1 min), 10 °C/min to 200 °C, 30 °C/min to 300 °C (3 min) (2014, 2016) Program:

120 °C (1 min), 10 °C/min to 200 °C, 30 °C/min to 300 °C (5 min) (2015)

Injector: 180 °C 320 °C Detector Temp: Helium Carrier: Split ratio: 20/1

Relative mass fraction of the main component as the free base:

Mean = 97.2%, s = 0.03% (7 sub samples in duplicate, May 2014) Initial analysis: Re-analysis: Mean = 97.2%, s = 0.07% (5 sub samples in duplicate, May 2015)

GC-FID: Instrument: Varian CP-3800

> Column: VF-1MS, 30 m \times 0.32 mm l.D. \times 0.25 μ m

Program: 60 °C (1 min), 10 °C/min to 200 °C, 30 °C/min to 300 °C (3 min)

Injector: 180 °C 320 °C Detector Temp: Carrier: Helium 20/1 Split ratio:

Relative mass fraction of the main component as the free base:

Initial analysis: Mean = 97.0%, s = 0.06% (7 sub samples in duplicate, May 2014) Re-analysis: Mean = 97.1%, s = 0.04% (6 sub samples in duplicate, April 2016) Re-analysis: Mean = 97.3%, s = 0.12% (5 sub samples in duplicate, April 2017)

GC-FID: Instrument: Agilent 6890

> Column: HP-1, 30 m \times 0.32 mm l.D. \times 0.25 μ m

120 °C (1 min), 10 °C/min to 200 °C, 30 °C/min to 300 °C (3 min) Program:

180 °C Injector: 320 °C Detector Temp: Helium Carrier: Split ratio: 20/1

Relative mass fraction of the main component as the free base:

Initial analysis: Mean = 97.0%, s = 0. 1% (7 sub samples in duplicate, June 2014)

Karl Fischer analysis: Moisture content 0.4% mass fraction (May 2014)

Moisture content 0.1% mass fraction (May 2015) Moisture content 0.4% mass fraction (April 2016) Moisture content 0.2% mass fraction (April 2017)

Volatiles content < 0.1% and non-volatile residue < 0.2% mass fraction (August 2019) Thermogravimetric analysis:

NMIA D1017 Report ID: D1017.2017.04

Spectroscopic and other characterisation data

GC-MS: Instrument: Agilent 6890/5973

Column: TG-1MS, 30 m x 0.25 mm l.D. x 0.25 μ m Program: 60 °C (1 min), 10 °C/min to 300 °C (3 min)

Injector: 250 °C
Split ratio: 20/1
Transfer line temp: 280 °C
Carrier: Helium
Scan range: 50-550 m/z

The retention times of the free base and *N*-acetyl derivative are reported along with the major peaks in the mass spectra. The latter are reported as mass/charge ratios and (in brackets) as a percentage relative to the base

peak.

Free base (14.5 min): 209 (M⁺, 7), 180 (68), 165 (100), 149 (8), 134 (13), 119 (19), 91 (18), 77 (10) *m/z N*-Acetyl (18.0 min): 251 (M⁺, 30), 192 (100), 177 (65), 165 (8), 149 (13), 134 (11), 119 (22), 105 (6), 91 (14)

m/z

HS-GC-MS: Instrument: Agilent 6890/5973/G1888

Column: DB-624, 30 m x 0.25 mm l.D. x 1.4 μm

Program: 50 °C (5 min), 7 °C/min to 120 °C, 15 °C/min to 220 °C (8.3 min)

Injector: 150 °C Transfer line temp: 280 °C

Carrier: Helium, 1.2 mL/min

Split ratio: 50/1 Solvents detected: Ethanol

TLC: Conditions: Kieselgel 60F₂₅₄. Dichloromethane/Methanol/conc NH₃ (11:1: single drop)

Single spot observed, $R_f = 0.2$

IR: BioRad FTS3000MX FT-IR

Range: 4000-400 cm⁻¹, KBr powder

Peaks: 3353, 3030, 2934, 2725, 2660, 2611, 2539, 2475, 1956, 1590, 1524, 1464, 1410, 1338,

1231, 1124, 1096, 1013, 960, 840, 761, 691, 642 cm⁻¹

¹H NMR: Instrument: Bruker Avance III-500

Field strength: 500 MHz Solvent: D₂O (4.79 ppm)

Spectral data: δ 2.06 (3H, s), 2.16 (3H, s), 2.96 (2H, t, J = 7.3 Hz), 3.20 (2H, t, J = 7.3 Hz), 3.68 (3H,

s), 3.78 (3H, s), 6.77 (1H, s) ppm

Ethanol estimated at 0.2% mass fraction was observed in the ¹H NMR

¹³C NMR: Instrument: Bruker Avance III-500

Field strength: 126 MHz Solvent: D₂O

Spectral data: δ 11.2, 12.1, 27.8, 40.0, 56.2, 60.9, 110.9, 126.3, 126.8, 131.8, 150.0, 153.6 ppm

Melting point: 232-234 °C

Microanalysis: Found: C = 58.8%, H = 8.4%, N = 5.8%; CI = 14.4% (June, 2014)

Calculated: C = 58.7%, H = 8.2%, N = 5.7%; CI = 14.4% (Calculated for $C_{12}H_{19}NO_2$.HCI)