Deemed-to-Satisfy Provisions

J6.0 Deemed-to-Satisfy Provisions

(a) Where a Deemed-to-Satisfy Solution is proposed, Performance Requirement JP1 is satisfied by complying with—
 (i) J0.1 to J0.5; and
 (ii) J1.1 to J1.6; and
 (iii) J3.1 to J3.7; and
 (iv) J5.1 to J5.12; and
 (v) J6.1 to J6.8; and
 (vi) J7.1 to J7.4; and
 (vii) J8.1 to J8.3.

(b) Where a Performance Solution is proposed, the relevant Performance Requirements must be determined in accordance with A2.2(3) and A2.4(3) as applicable.

J6.1 Application of Part

J6.2, J6.3 and J6.5(a)(ii) do not apply to a Class 8 electricity network substation.

J6.2 Artificial lighting

(a) In a sole-occupancy unit of a Class 2 building or a Class 4 part of a building—
 (i) the lamp power density or illumination power density of artificial lighting must not exceed the allowance of—
 (A) 5 W/m² within a sole-occupancy unit; and
 (B) 4 W/m² on a verandah, balcony or the like attached to a sole-occupancy unit; and
 (ii) the illumination power density allowance in (i) may be increased by dividing it by the illumination power density adjustment factor for a control device in Table J6.2b as applicable; and
 (iii) when designing the lamp power density or illumination power density, the power of the proposed installation must be used rather than nominal allowances for exposed batten holders or luminaires; and
 (iv) halogen lamps must be separately switched from fluorescent lamps.

(b) In a building other than a sole-occupancy unit of a Class 2 building or a Class 4 part of a building—
 (i) for artificial lighting, the aggregate design illumination power load must not exceed the sum of the allowances obtained by multiplying the area of each space by the maximum illumination power density in Table J6.2a; and
 (ii) the aggregate design illumination power load in (i) is the sum of the design illumination power loads in each of the spaces served; and
 (iii) where there are multiple lighting systems serving the same space, the design illumination power load for (ii) is—
 (A) the total illumination power load of all systems; or
 (B) where a control system permits only one system to operate at a time—
 (aa) based on the highest illumination power load; or
 (bb) determined by the formula—

\[
\frac{[H \times T/2 + P \times (100 - T/2)]}{100}
\]

where—
H = the highest illumination power load; and
T = the time for which the maximum illumination power load will occur, expressed...
Energy efficiency

Deemed-to-Satisfy Provisions

as a percentage; and

\[P = \text{the predominant illumination power load.} \]

(c) The requirements of (a) and (b) do not apply to the following:

(i) Emergency lighting provided in accordance with Part E4.

(ii) Signage, display lighting within cabinets and display cases that are fixed in place.

(iii) Lighting for accommodation within the residential part of a detention centre.

(iv) A heater where the heater also emits light, such as in bathrooms.

(v) Lighting of a specialist process nature such as in a surgical operating theatre, fume cupboard or clean workstation.

(vi) Lighting of performances such as theatrical or sporting.

(vii) Lighting for the permanent display and preservation of works of art or objects in a museum or gallery other than for retail sale, purchase or auction.

(viii) Lighting installed solely to provide photosynthetically active radiation for indoor plant growth on green walls and the like.

(d) For the purposes of Table J6.2b, the following control devices must comply with Specification J6:

(i) Lighting timers.

(ii) Motion detectors.

(iii) Daylight sensors and dynamic lighting control devices.

Table J6.2a Maximum illumination power density

<table>
<thead>
<tr>
<th>Space</th>
<th>Maximum illumination power density (W/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auditorium, church and public hall</td>
<td>8</td>
</tr>
<tr>
<td>Board room and conference room</td>
<td>5</td>
</tr>
<tr>
<td>Carpark - general</td>
<td>2</td>
</tr>
<tr>
<td>Carpark - entry zone (first 15 m of travel) during the daytime</td>
<td>11.5</td>
</tr>
<tr>
<td>Carpark - entry zone (next 4 m of travel) during the day</td>
<td>2.5</td>
</tr>
<tr>
<td>Carpark - entry zone (first 20 m of travel) during nighttime</td>
<td>2.5</td>
</tr>
<tr>
<td>Common rooms, spaces and corridors in a Class 2 building</td>
<td>4.5</td>
</tr>
<tr>
<td>Control room, switch room and the like - intermittent monitoring</td>
<td>3</td>
</tr>
<tr>
<td>Control room, switch room and the like - constant monitoring</td>
<td>4.5</td>
</tr>
<tr>
<td>Corridors</td>
<td>5</td>
</tr>
<tr>
<td>Courtroom</td>
<td>4.5</td>
</tr>
<tr>
<td>Dormitory of a Class 3 building used for sleeping only</td>
<td>3</td>
</tr>
<tr>
<td>Dormitory of a Class 3 building used for sleeping and study</td>
<td>4</td>
</tr>
<tr>
<td>Entry lobby from outside the building</td>
<td>9</td>
</tr>
<tr>
<td>Health-care - infants' and children's wards and emergency department</td>
<td>4</td>
</tr>
<tr>
<td>Health-care - examination room</td>
<td>4.5</td>
</tr>
<tr>
<td>Health-care - examination room in intensive care and high dependency ward</td>
<td>6</td>
</tr>
<tr>
<td>Health-care - all other patient care areas including wards and corridors</td>
<td>2.5</td>
</tr>
<tr>
<td>Kitchen and food preparation area</td>
<td>4</td>
</tr>
<tr>
<td>Laboratory - artificially lit to an ambient level of 400 lx or more</td>
<td>6</td>
</tr>
<tr>
<td>Library - stack and shelving area</td>
<td>2.5</td>
</tr>
<tr>
<td>Library - reading room and general areas</td>
<td>4.5</td>
</tr>
<tr>
<td>Lounge area for communal use in a Class 3 or 9c building</td>
<td>4.5</td>
</tr>
<tr>
<td>Museum and gallery - circulation, cleaning and service lighting</td>
<td>2.5</td>
</tr>
<tr>
<td>Office - artificially lit to an ambient level of 200 lx or more</td>
<td>4.5</td>
</tr>
</tbody>
</table>
Energy efficiency

Deemed-to-Satisfy Provisions

<table>
<thead>
<tr>
<th>Space</th>
<th>Maximum illumination power density (W/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office - artificially lit to an ambient level of less than 200 lx</td>
<td>2.5</td>
</tr>
<tr>
<td>Plant room where an average of 160 lx vertical illuminance is required on a vertical panel such as in switch rooms</td>
<td>4</td>
</tr>
<tr>
<td>Plant rooms with a horizontal illuminance target of 80 lx</td>
<td>2</td>
</tr>
<tr>
<td>Restaurant, café, bar, hotel lounge and a space for the serving and consumption of food or drinks</td>
<td>14</td>
</tr>
<tr>
<td>Retail space including a museum and gallery whose purpose is the sale of objects</td>
<td>14</td>
</tr>
<tr>
<td>School - general purpose learning areas and tutorial rooms</td>
<td>4.5</td>
</tr>
<tr>
<td>Solo-occupancy unit of a Class 3 or 9c building</td>
<td>5</td>
</tr>
<tr>
<td>Storage</td>
<td>1.5</td>
</tr>
<tr>
<td>Service area, cleaner’s room and the like</td>
<td>1.5</td>
</tr>
<tr>
<td>Toilet, locker room, staff room, rest room and the like</td>
<td>3</td>
</tr>
<tr>
<td>Wholesale storage area with a vertical illuminance target of 160 lx</td>
<td>4</td>
</tr>
<tr>
<td>Stairways, including fire-isolated stairways</td>
<td>2</td>
</tr>
<tr>
<td>Lift cars</td>
<td>3</td>
</tr>
</tbody>
</table>

Notes to Table J6.2a:

1. In areas not listed above, the maximum *illumination power density* is—
 a. for an illuminance not more than 80 lx, 2 W/m²; and
 b. for an illuminance more than 80 lx and not more than 160 lx, 2.5 W/m²; and
 c. for an illuminance more than 160 lx and not more than 240 lx, 3 W/m²; and
 d. for an illuminance more than 240 lx and not more than 320 lx, 4.5 W/m²; and
 e. for an illuminance more than 320 lx and not more than 400 lx, 6 W/m²; and
 f. for an illuminance more than 400 lx and not more than 600 lx, 10 W/m²; and
 g. for an illuminance more than 600 lx and not more than 800 lx, 11.5 W/m².

2. For enclosed spaces with a Room Aspect Ratio of less than 1.5, the maximum *illumination power density* may be increased by dividing it by an adjustment factor for room aspect which is—
 \[0.5 + \left(\frac{\text{Room Aspect Ratio}}{3}\right)\]
 The Room Aspect Ratio of the enclosed space is determined by the formula—
 \[A/(H \times C)\],
 where—
 a. \(A\) is the area of the enclosed space; and
 b. \(H\) is the height of the space measured from the floor to the highest part of the ceiling; and
 c. \(C\) is the perimeter of the enclosed space at floor level.

3. In addition to 2, the maximum *illumination power density* may be increased by dividing it by the *illumination power density* adjustment factor in Table J6.2b and Table J6.2c and where the control device is not installed to comply with J6.3.

4. Circulation spaces are included in the allowances listed in the Table.

Table J6.2b Illumination power density adjustment factor for a control device

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Illumination power density adjustment factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion detector</td>
<td>In a toilet or change room, other than a public toilet, in a Class 6 building</td>
<td>0.4</td>
</tr>
<tr>
<td>Motion detector</td>
<td>Where a group of light fittings serving less than 100 m² is controlled by one or more detectors</td>
<td>0.6</td>
</tr>
<tr>
<td>Motion detector</td>
<td>Where a group of light fittings serving 100 m² or more is controlled by</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Energy efficiency

Deemed-to-Satisfy Provisions

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Illumination power density adjustment factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmable dimming system</td>
<td>Where not less than 75% of the area of a space is controlled by programmable dimmers</td>
<td>0.85</td>
</tr>
<tr>
<td>Fixed dimming</td>
<td>All fittings with fixed dimming</td>
<td>Whichever is greater of (a) 0.5; or (b) 0.2+0.8L where L = the illuminance turndown for the fixed dimming.</td>
</tr>
<tr>
<td>Lumen depreciation dimming</td>
<td>All fittings with lumen depreciation dimming</td>
<td>0.85</td>
</tr>
<tr>
<td>Two stage sensor - equipped lights with minimum power of 30% of peak power or less</td>
<td>Fire stairs and other spaces not used for regular transit</td>
<td>0.4</td>
</tr>
<tr>
<td>Two stage sensor - equipped lights with minimum power of 30% of peak power or less</td>
<td>Transitory spaces in regular use or in a carpark</td>
<td>0.7</td>
</tr>
<tr>
<td>Daylight sensor and dynamic lighting control device - dimmed or stepped switching of lights adjacent windows</td>
<td>In a Class 5, 6, 7, 8 or 9c building or a Class 9a building, other than a ward area, where the lights are adjacent windows, other than roof lights, for a distance from the window equal to the depth of the floor to window head height</td>
<td>0.5 Note 2</td>
</tr>
<tr>
<td>Daylight sensor and dynamic lighting control device - dimmed or stepped switching of lights adjacent windows</td>
<td>Serving a Class 3 or 9c building, or a Class 9a ward area, where the lights are adjacent windows, other than roof lights, for a distance from the window equal to the depth of the floor to window head height</td>
<td>0.75 Note 2</td>
</tr>
<tr>
<td>Daylight sensor and dynamic lighting control device - dimmed or stepped switching of lights adjacent windows</td>
<td>In a Class 5, 6, 7, 8 or 9b building or a Class 9a building, other than a ward area, where the lights are adjacent roof lights.</td>
<td>0.6 Note 2</td>
</tr>
<tr>
<td>Daylight sensor and dynamic lighting control device - dimmed or stepped switching of lights adjacent windows</td>
<td>In a Class 3 or 9c building, or a Class 9a ward area, where the lights are adjacent roof lights</td>
<td>0.8 Note 2</td>
</tr>
</tbody>
</table>

Notes to Table J6.2b:

1. A maximum of two illumination power density adjustment factors for a control device can be applied to an area. Where more than one illumination power density adjustment factor (other than for room aspect) apply to an area, they are to be combined using the following formula:
Energy efficiency

Deemed-to-Satisfy Provisions

\[A \times (B + [(1 - B) / 2]), \]

where—

a. \(A \) is the lowest applicable illumination power density adjustment factor; and
b. \(B \) is the second lowest applicable illumination power density adjustment factor.

2. The adjustment factor does not apply to tungsten, halogen or other incandescent sources.
3. Includes luminaires with a pre-programmed function which provides dimming from ON to OFF (one-stage dimming).
4. The illumination power density adjustment factor is only applied to lights controlled by daylight sensors between 8:00am and 7:00pm.

Table J6.2c Illumination power density adjustment factor for light colour

<table>
<thead>
<tr>
<th>Light source</th>
<th>Description</th>
<th>Illumination power density adjustment factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRI ≥ 90</td>
<td>Where lighting with good colour rendering is used</td>
<td>0.9</td>
</tr>
<tr>
<td>CCT ≤ 3500 K Note</td>
<td>Where lighting with a warm appearance is used</td>
<td>0.8</td>
</tr>
<tr>
<td>CCT ≥ 4500 K</td>
<td>Where lighting with a cool appearance is used</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Note to Table J6.2c: Includes luminaires that can adjust their CCT to 3500 K or below.

J6.3 Interior artificial lighting and power control

(a) All artificial lighting of a room or space must be individually operated by—

(i) a switch; or
(ii) other control device; or
(iii) a combination of (i) and (ii).

(b) An occupant activated device, such as a room security device, a motion detector in accordance with Specification J6, or the like, must be provided in the sole-occupancy unit of a Class 3 building, other than where providing accommodation for people with a disability or the aged, to cut power to the artificial lighting, air-conditioner, local exhaust fans and bathroom heater when the sole-occupancy unit is unoccupied.

(c) An artificial lighting switch or other control device in (a) must—

(i) if an artificial lighting switch, be located in a visible and easily accessed position—

(A) in the room or space being switched; or
(B) in an adjacent room or space from where 90% of the lighting being switched is visible; and

(ii) for other than a single functional space such as an auditorium, theatre, swimming pool, sporting stadium or warehouse—

(A) not operate lighting for an area of more than 250 m² if in a Class 5 building or a Class 8 laboratory; or
(B) not operate lighting for an area of more than—

(aa) 250 m² for a space of not more than 2000 m²; or
(bb) 1000 m² for a space of more than 2000 m²,

if in a Class 3, 6, 7, 8 (other than a laboratory) or 9 building.

(d) 95% of the light fittings in a building or storey of a building, other than a Class 2 or 3 building or a Class 4 part of a building, of more than 250 m² must be controlled by—

(i) a time switch in accordance with Specification J6; or
(ii) an occupant sensing device such as—

(A) a security key card reader that registers a person entering and leaving the building; or
(B) a motion detector in accordance with Specification J6.
Energy efficiency

Deemed-to-Satisfy Provisions

(e) In a Class 5, 6 or 8 building of more than 250 m², artificial lighting in a natural lighting zone adjacent to windows must be separately controlled from artificial lighting not in a natural lighting zone in the same storey except where—
 (i) the room containing the natural lighting zone is less than 20 m²; or
 (ii) the room’s natural lighting zone contains less than 4 luminaires; or
 (iii) 70% or more of the luminaires in the room are in the natural lighting zone.

(f) Artificial lighting in a fire-isolated stairway, fire-isolated passageway or fire-isolated ramp, must be controlled by a motion detector in accordance with Specification J6.

(g) Artificial lighting in a foyer, corridor and other circulation spaces—
 (i) of more than 250 W within a single zone; and
 (ii) adjacent to windows,
 must be controlled by a daylight sensor and dynamic lighting control device in accordance with Specification J6.

(h) Artificial lighting for daytime travel in the first 19 m of travel in a carpark entry zone must be controlled by a daylight sensor in accordance with Specification J6.

(i) The requirements of (a), (b), (c), (d), (e), (f), (g) and (h) do not apply to the following:
 (i) Emergency lighting in accordance with Part E4.
 (ii) Where artificial lighting is needed for 24 hour occupancy such as for a manufacturing process, parts of a hospital, an airport control tower or within a detention centre.

(j) The requirements of (d) do not apply to the following:
 (i) Artificial lighting in a space where the sudden loss of artificial lighting would cause an unsafe situation such as—
 (A) in a patient care area in a Class 9a building or in a Class 9c building; or
 (B) a plant room or lift motor room; or
 (C) a workshop where power tools are used.
 (ii) A heater where the heater also emits light, such as in bathrooms.

J6.4 Interior decorative and display lighting

(a) Interior decorative and display lighting, such as for a foyer mural or art display, must be controlled—
 (i) separately from other artificial lighting; and
 (ii) by a manual switch for each area other than when the operating times of the displays are the same in a number of areas such as in a museum, art gallery or the like, in which case they may be combined; and
 (iii) by a time switch in accordance with Specification J6 where the display lighting exceeds 1 kW.

(b) Window display lighting must be controlled separately from other display lighting.

J6.5 Exterior artificial lighting

(a) Exterior artificial lighting attached to or directed at the facade of a building, must—
 (i) be controlled by—
 (A) a daylight sensor; or
 (B) a time switch that is capable of switching on and off electric power to the system at variable pre-programmed times and on variable pre-programmed days; and
 (ii) when the total lighting load exceeds 100 W—
 (A) use LED luminaires for 90% of the total lighting load; or
 (B) be controlled by a motion detector in accordance with Specification J6; or
 (C) when used for decorative purposes, such as façade lighting or signage lighting, have a separate time
Deemed-to-Satisfy Provisions

(b) The requirements of (a)(ii) do not apply to the following:

(i) Emergency lighting in accordance with Part E4.

(ii) Lighting around a detention centre.

J6.6 Boiling water and chilled water storage units

Power supply to a boiling water or chilled water storage unit must be controlled by a time switch in accordance with Specification J6.

J6.7 Lifts

Lifts must—

(a) be configured to ensure artificial lighting and ventilation in the car are turned off when it is unused for 15 minutes; and

(b) achieve the idle and standby energy performance level in Table 6.7a; and

(c) achieve—

(i) the energy efficiency class in Table 6.7b; or

(ii) if a dedicated goods lift, energy efficiency class D in accordance with ISO 25745-2.

<table>
<thead>
<tr>
<th>Rated load</th>
<th>Idle and standby energy performance level in accordance with ISO 25745-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than or equal to 800 kg</td>
<td>2</td>
</tr>
<tr>
<td>801 kg to less than or equal to 2000 kg</td>
<td>3</td>
</tr>
<tr>
<td>2001 kg to less than or equal to 4000 kg</td>
<td>4</td>
</tr>
<tr>
<td>Greater than 4000 kg</td>
<td>5</td>
</tr>
</tbody>
</table>

Note to Table 6.7a: Applies to the standby power used after 30 minutes.

Table 6.7b Lift energy efficiency class

<table>
<thead>
<tr>
<th>Usage category in accordance with ISO 25745-2</th>
<th>Energy efficiency class in accordance with ISO 25745-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 4</td>
<td>C</td>
</tr>
<tr>
<td>> 5</td>
<td>D</td>
</tr>
</tbody>
</table>

J6.8 Escalators and moving walkways

Escalators and moving walkways must have the ability to slow to between 0.2 m/s and 0.05 m/s when unused for more than 15 minutes.
1. Scope

This Specification contains the requirements for lighting and power control devices including timers, time switches, motion detectors and daylight control devices.

2. Lighting timers

A lighting timer must—

(a) be located within 2 m of every entry door to the space; and
(b) have an indicator light that is illuminated when the artificial lighting is off; and
(c) not control more than—
 (i) an area of 100 m² with a single push button timer; and
 (ii) 95% of the lights in spaces of area more than 25 m²; and
(d) be capable of maintaining the artificial lighting—
 (i) for not less than 5 minutes; and
 (ii) for not more than 12 hours if the timer is reset.

3. Time switch

(a) A time switch must be—
 (i) capable of switching on and off electric power at variable pre-programmed times and on variable pre-programmed days; and
 (ii) configured so that the lights are switched off at any time the space is designated to be unoccupied.
(b) A time switch for internal lighting must be capable of being overridden by—
 (i) a means of turning the lights on, either by—
 (A) a manual switch, remote control or an occupant sensing device that on sensing a person’s presence, overrides the time switch for a period of up to 2 hours, after which if there is no further presence detected, the time switch must resume control; or
 (B) an occupant sensing device that overrides the time switch upon a person’s entry and returns control to the time switch upon the person’s exiting, such as a security card reader or remote control; and
 (ii) a manual “off” switch.
(c) A time switch for external lighting must be—
 (i) configured to limit the period the system is switched on to between 30 minutes before sunset and 30 minutes after sunrise is determined or detected including any pre-programmed period between these times; and
 (ii) capable of being overridden by a manual switch, remote control or a security access system for a period of up to 8 hours, after which the time switch must resume control.
(d) A time switch for boiling water or chilled water storage units must be capable of being overridden by a manual switch or a security access system that senses a person’s presence, overrides for a period of up to 2 hours, after which if there is no further presence detected, the time switch must resume control.

4. Motion detectors

(a) In a Class 2, 3 or 9c residential care building other than within a sole-occupancy unit, a motion detector must—
 (i) be capable of sensing movement such as by infra-red, ultrasonic or microwave detection or by a combination of these means; and
Energy efficiency

Deemed-to-Satisfy Provisions

(ii) be capable of detecting a person before they are 1 m into the space; and

(iii) other than within a sole-occupancy unit of a Class 3 building, not control more than—

(A) an area of 100 m²; and

(B) 95% of the lights in spaces of area more than 25 m²; and

(iv) be configured so that the lights are turned off when the space is unoccupied for more than 15 minutes; and

(v) be capable of being overridden by a manual switch only enabling the lights to be turned off.

(b) In a Class 5, 6, 7, 8, 9a or 9b building, a motion detector must—

(i) be capable of sensing movement such as by infra-red, ultrasonic or microwave detection or by a combination of these means; and

(ii) be capable of detecting—

(A) a person before they have entered 1 m into the space; and

(B) movement of 500 mm within the useable part of the space; and

(iii) not control more than—

(A) in other than a carpark, an area of 500 m² with a single sensor or group of parallel sensors; and

(B) 75% of the lights in spaces using high intensity discharge; and

(iv) be configured so that the lights are turned off when the space is unoccupied for more than 15 minutes; and

(v) be capable of being overridden by a manual switch that only enables the lights to be turned off.

(c) When outside a building, a motion detector must—

(i) be capable of sensing movement such as by pressure, infra-red, ultrasonic or microwave detection or by a combination of these means; and

(ii) be capable of detecting a person within a distance from the light equal to—

(A) twice the mounting height; or

(B) 80% of the ground area covered by the light’s beam; and

(iii) not control more than five lights; and

(iv) be operated in series with a photoelectric cell or astronomical time switch so that the light will not operate in daylight hours; and

(v) be configured so that the lights are turned off when the area is unoccupied for more than 15 minutes; and

(vi) have a manual override switch which is reset after a maximum period of 4 hours.

(d) When in a fire-isolated stairway, fire-isolated passageway or fire-isolated ramp, a motion detector must—

(i) be capable of sensing movement such as by infra-red, ultrasonic or microwave detection or by a combination of these means; and

(ii) be capable of detecting—

(A) movement of 500 mm within the useable part of the space; and

(B) a person before they have entered 1 m into the space; and

(iii) be configured so that the lights dim to a 30% peak power or less when the space is unoccupied for more than 15 minutes.

5. Daylight sensor and dynamic lighting control device

(a) A daylight sensor and dynamic control device for artificial lighting must—

(i) for switching on and off—

(A) be capable of having the switching level set point adjusted between 50 and 1000 lux; and
Energy efficiency

Deemed-to-Satisfy Provisions

(B) have—

(aa) a delay of more than 2 minutes; and

(bb) a differential of more than 100 lux for a sensor controlling high pressure discharge lighting, and 50 lux for a sensor controlling other than high pressure discharge lighting; and

(ii) for dimmed or stepped switching, be capable of reducing the power consumed by the controlled lighting in proportion to the incident daylight on the working plane either—

(A) continuously down to a power consumption that is less than 50% of full power; or

(B) in no less than 4 steps down to a power consumption that is less than 50% of full power.

(b) Where a daylight sensor and dynamic control device has a manual override switch, the manual override switch must not be able to switch the lights permanently on or bypass the lighting controls.