
# Review of Measures 529 Continuation Inquiry 532

SHAPING POSSIBILITIES

Exporter visit briefing 29 January 2020 Agenda

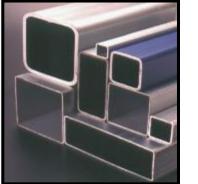
FOR PUBLIC RECORD

#### ·민준규 AustubeMills

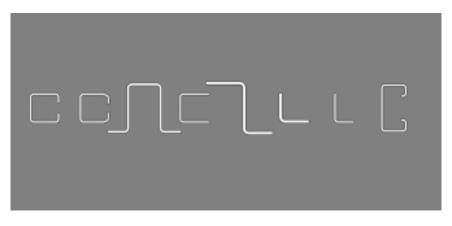







Exporters

### The Goods: Hollow Structural Sections


- > Electric resistance welded steel pipe and tube
- Either circular (CHS) or non-circular (RHS, SHS, rail, silo rectangular/square/oval) = collectively HSS
- Circular Product
  - > Outside diameter > 21mm to 165.1mm
- Rectangular, square and oval products
  - > Up to and including a 1277.3 mm perimeter (950.0 mm for Thailand)
- > Finish types for the goods include pre-galvanised, hot-dipped galvanised (HDG), and non-galvanised HSS.
- > Coatings applied paint, oil, primer
- > Ends may be plain, threaded, swaged or shouldered

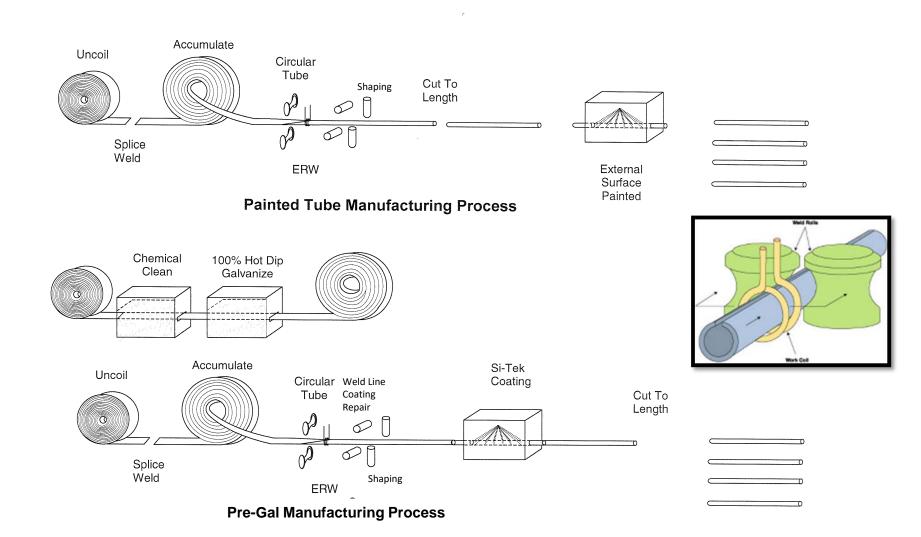
#### $\checkmark$ The goods

#### × Not 'the goods'








FOR PUBLIC RECORD

🔓 Austube Mills

### How is HSS made?



FOR PUBLIC RECORD



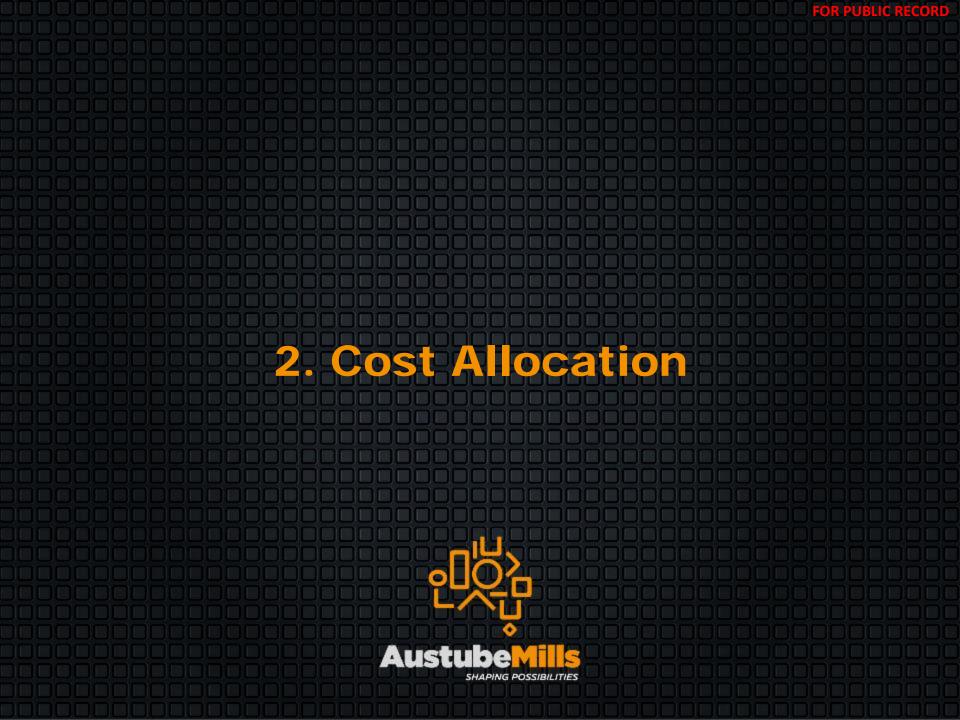
# How is HSS used?

- > Structural elements in buildings and other structures
- > A range of manufactured products
- Applications in residential and commercial construction, mining, engineering, manufacturing, agriculture and transport





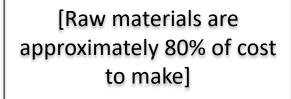



FOR PUBLIC RECORD

**AustubeMills** 










# **Cost Allocation**

Cost elements include:

- Hot Rolled Coil
- Energy (electricity and gas)
- Labour
- Mill consumables (coolant, paint, ERW copper work coils)
- Maintenance items (tooling, bearings, housings, ERW welder components)
- Strapping for bundling, export packaging







FOR PUBLIC RECORD

Austube Mills

# FOR PUBLIC RECORD ß Ing 0 • e 8 0-



T

0

Ī

# **Model Control Codes**



| Item | Category                                | Sub-category                                                                                                   | Identifier |  |
|------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|------------|--|
| 1    | Prime                                   | Prime                                                                                                          | Р          |  |
|      | Fillite                                 | Non-Prime / downgrade                                                                                          | Ν          |  |
|      | <b>O</b> a hara i a i a a               | Galvanised                                                                                                     | G          |  |
| 2    | Galvanising                             | None (e.g. mill finish, 'black')                                                                               | N          |  |
|      |                                         | Oiled                                                                                                          | 0          |  |
| 3    | Finish                                  | Painted                                                                                                        | Р          |  |
|      |                                         | No oil or paint                                                                                                | N          |  |
| 4    | Shape                                   | Circular                                                                                                       | С          |  |
| *    | Shape                                   | Rectangular or square                                                                                          | R          |  |
|      |                                         | Structural steel grade with<br>nominal minimum yield strength<br>less than or equal to 300 MPa                 | 250        |  |
| 5    | Steel<br>grades -<br>nominal<br>minimum | Structural steel grade with<br>nominal minimum yield strength<br>greater than 300 MPa but less<br>than 380 MPa | 350        |  |
|      | yield<br>strength                       | Structural steel grade with<br>nominal minimum yield strength<br>equal to or greater than 380 MPa              | 450        |  |
|      |                                         | Non-structural steel grade                                                                                     | N          |  |
|      |                                         | Plain                                                                                                          | Р          |  |
| 6    | Ends                                    | Threaded (at one or both ends)                                                                                 | Т          |  |
|      |                                         | Threaded and coupled                                                                                           | С          |  |

Table 2: Proposed MCC

|   |   | Prime                                                           |                                                                                                                                                                                                          |     |
|---|---|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | 1 | Prime                                                           | , mile                                                                                                                                                                                                   | Р   |
|   |   |                                                                 | Non-Prime                                                                                                                                                                                                | N   |
|   |   |                                                                 | Galvanised                                                                                                                                                                                               | G   |
| 1 | 2 | Finish or Coating                                               | Painted                                                                                                                                                                                                  | Р   |
|   |   |                                                                 | Other                                                                                                                                                                                                    | N   |
|   |   | Change                                                          | Circular Hollow Section (CHS)                                                                                                                                                                            | С   |
|   | 3 | Shape<br>(compare same<br>shapes)                               | Rectangular Square Hollow Section<br>(RHS SHS)                                                                                                                                                           | R   |
|   |   | simpest                                                         | Other (oval, rail, silo)                                                                                                                                                                                 | 0   |
|   |   |                                                                 | Minimum yield strength less than<br>300MPa.eg<br>AS 1074 and AS/NZS 1163-250 -<br>Compare to TIS 107-2533 Grade HS41,<br>JIS G3444 Grade STK400, JIS G3466<br>Grade STKR400, ASTM A500 Grade A<br>and B. | 250 |
|   | 4 | Steel grades/<br>Standards nominal<br>minimum yield<br>strength | Minimum yield strength 300MPa to 380<br>MPa. eg<br>AS1450 and AS/NZS 1163-350 Compare<br>to TIS 107-2533 Grade HS51, JIS G3444<br>Grade STK490, JIS G3466 Grade<br>STKR490, ASTM A500 Grade C            | 350 |
|   |   |                                                                 | Minimum yield strength greater than<br>380MPa. eg<br>AS/NZS 1163-450                                                                                                                                     | 450 |
|   |   |                                                                 | No nominal minimum yield strength<br>specified                                                                                                                                                           | N   |
|   |   |                                                                 | Plain                                                                                                                                                                                                    | Р   |
|   | 5 | End type                                                        | Threaded one end or both ends                                                                                                                                                                            | т   |
|   |   |                                                                 | Other eg. swaged, shouldered, coupled                                                                                                                                                                    | 0   |
|   |   |                                                                 | <= 2mm: less than or equal to 2mm<br>thickness                                                                                                                                                           | 1   |
|   | 6 | Gauge, thickness                                                | > 2mm to <= 5mm: greater than 2mm<br>to 5mm thickness                                                                                                                                                    | 2   |
|   |   | > 5mm: greater than 5mm thickness                               | 3                                                                                                                                                                                                        |     |

# **Prime or non-prime**

FOR PUBLIC RECORD

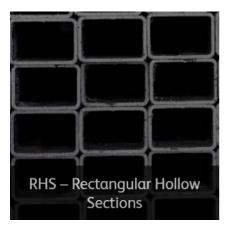
- "Downgrade" or Factory Seconds = product that does not meet specification
- Sold at a discounted price into the domestic market
- Accounts for between 5% (world class) and 10% (typical) of production in HSS production
- Would not expect to see export sales of downgrade or factory seconds ie. Exclude domestic sales of non-prime from comparison to export sales

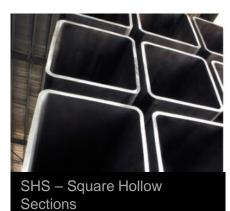
# **Finish or coating**



FOR PUBLIC RECORD

- Key cost and sales price driver important MCC category
- Pre-galvanized coil is approx AU\$XXX premium over uncoated HRC
- Painted product verify precision painting versus protective coating
  - Finish = "Oiled O" or "Painted or Clearcoat P" "No Coating N"








• Compare like shaped HSS







#### Common







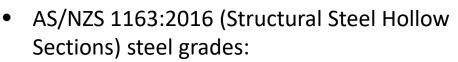
#### Less Common

# **Gauge or thickness**

Austube Mill

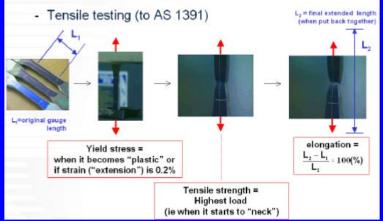
FOR PUBLIC RECORD

- <= 2 mm
- > 2 to 5 mm
- > 5 mm
- Price points reflect different gauge HRC costs
- Typically lighter and heavier gauge HRC cost more (than >2 to 5mm)




- KEY MCC CATEGORY largest price differentiator
- Higher grade HSS will typically sell at a higher price due to the cost of the higher grade coil used to make the HSS
- Higher grade coil production involves more (expensive) alloy additions to deliver the required higher strength (chemical/metallurgical strengthening mechanism)
- Exports made to:
  - AS/NZS 1163 Cold-formed <u>structural</u> steel hollow sections (SHS, RHS and CHS)
  - AS 1450 Steel tubes for mechanical purposes (Oval)
  - AS 1074 Steel tubes and tubulars for <u>ordinary</u> service (CHS)
- Domestic sales made to other international Standards <u>OR</u> AS/NZS 1163 <u>OR</u> commercial grade/downgrade/non-prime (unlikely for export)

AustubeMi


### Grade Standard minimum yield strength

#### →Mechanical testing



- Mechanical properties (Table 7)
- Higher strength grades can withstand greater bending, compression and tension forces before failure.





#### AS/NZS 1163 - C350L0

- C = cold-formed
- 350 = nominal minimum yield strength in MPa
- L = impact properties
- 0 = impact test at 0°C

### Grade Standard minimum yield strength



|        |      | % Chei    | mical Compositio | n (Max) |       | Mechanical Properties (Min) |                  |            |  |  |  |  |
|--------|------|-----------|------------------|---------|-------|-----------------------------|------------------|------------|--|--|--|--|
| Grade  | C    | Si        | Mn               | D       | c     | Yield Strength              | Tensile Strength | Elongation |  |  |  |  |
|        |      | 5         |                  | ·       | 5     | MPa                         | MPa              | %          |  |  |  |  |
| STK400 | 0.25 | -         | -                | 0.040   | 0.040 | 235                         | 400              | 23         |  |  |  |  |
| STK490 | 0.18 | 0.18 0.55 |                  | 0.035   | 0.035 | 315                         | 490              | 23         |  |  |  |  |



(JIS)

Pacific Pipe Products

# Carbon Steel Rectangular Tubes for General Structure ท่อเหล็กรูปสี่เหลี่ยมผืนผ้า สำหรับงานโครงสร้าง

% Chemical Composition (Max) Mechanical Properties (Min) Grade Yield Strength Tensile Strength Elongation MPa MPa STKR400 0.25 0.040 0.040 245 400 23 \_ \_ 325 0.18 0.55 1.50 0.040 0.040 STKR490 490 23

#### Carbon Steel Round Pipe for General Structure

ท่อเหล็กกลม สำหรับงานโครงสร้าง

### ASTM A500

JIS G3466

FOR PUBLIC RECORD

🔁 AustubeMills

| Grad |         |      | % | o Chemical Co | Mechanical Properties (Min) |       |      |                |                  |            |  |
|------|---------|------|---|---------------|-----------------------------|-------|------|----------------|------------------|------------|--|
|      | Grade   |      |   |               |                             |       |      | Yield Strength | Tensile Strength | Elongation |  |
|      |         | С    |   | Mn            | Р                           | S     | Cu   | Round          | Round            | Round      |  |
|      |         |      |   |               |                             |       |      | MPa            | MPa              | %          |  |
|      | Grade A | 0.30 | - | 1.40          | 0.045                       | 0.045 | 0.18 | 230            | 310              | 25         |  |
|      | Grade B | 0.30 | - | 1.40          | 0.045                       | 0.045 | 0.18 | 290            | 400              | 23         |  |
|      | Grade C | 0.27 | - | 1.40          | 0.045                       | 0.045 | 0.18 | 315            | 425              | 21         |  |
|      | Grade D | 0.30 | - | 1.40          | 0.045                       | 0.045 | 0.18 | 250            | 400              | 23         |  |



**Beware: Verification by Mill Test Certificate** 





Beware: Model matching by Mill Test Certificate

#### ADRP Report 2018/88:

102. Ursine argues that in selecting a domestic model or grade for comparison to the exported goods, the Commission ought to have focused upon the actual yield strength of the domestic products rather than on the minimum yield strength for each grade or model and the minimum yield strength specified by the relevant Taiwanese and Australian standards. The rationale for this method of selection is that if a domestic model or grade shares a common coil specification with an export grade or model, the domestic and exported products' actual yield strength will be the same and that yield strength may exceed the minimum yield strength required by both the relevant domestic and export standards.

The Commission representatives noted that the actual yield strength

"is something which is not typically known to, or of interest to the customer ... All the customer is interested in, and prepared to pay for, is that the product meets the minimum [yield strength] standard."40



#### Beware: MCCs must be completed using final product Standard specifications

#### Continuation Inquiry 379 : Huludao verification visit report:

#### 3.2.1 Grade Allocation

The verification team noted that the grade of steel listed for each transaction on the Australian sales data was lower than the grade listing identified on the mill certificates for each transactions. Huludao advised that <u>when preparing the listing they had allocated</u> the grade for both domestic and export sales based on the grade of the raw materials used in the production of the finished goods, and not the grade of the finished goods. Huludao explained that occurred to allow the comparison to the cost data which as prepared using the raw material grade.

The verification team consider that this allocation was reasonable and was consistent with expected grade variations between raw materials and finished goods provided by the applicant and consistent with the approach taken in the 2012 verification.

This should not be allowed. Final products, certified to a given Standard, with finish applied should be shown in the sales files with final sales pricing data for proper comparison.



20

#### Common international Pipe and Tube Standards

| AS/NZS 1163:2016             | Cold-formed structural steel hollow sections                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| AS 1074 1989 (R2018)         | Steel tubes and tubulars for ordinary service                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| JIS G3444:2015               | Carbon steel tubes for general structural purposes                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| JIS G3466:2015               | Carbon Steel Square And Rectangular Tubes For General Structure                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| JIS G3445:2016               | Carbon Steel Tubes For Machine Structure                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|                              | Standard Specification for Cold-Formed Welded and Seamless Carbon                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| ASTIM A 500/AS00M . 2018     | Steel Structural Tubing in Rounds and Shapes                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|                              | Standard Specification for Cold-Formed Welded Carbon Steel Hollow                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| ASTIVI A 1085/A1085WI : 2015 | Structural Sections (HSS)                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| PS EN 10210 1 · 2006         | Cold formed welded structural hollow sections of non-alloy and fine                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| B3 EN 10219-1 : 2008         | grain steels - Part 1: Technical delivery conditions                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| KS D 3566:2016               | Carbon steel tubes for general structural purposes                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| KS D 3568:2016               | Carbon steel square pipes for general structural purposes                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| CNS 7141:2014                | Carbon steel square and rectangular tubes for general structure                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| CNS 15727:2014               | Carbon steel tubes for building structure                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| GB/T 6728 : 2017             | Cold forming hollow sectional steel for general structure                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| GB/T 6725 : 2017             | General requirements of cold forming steel sections                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| MS 1862:2005                 | Welded carbon steel pipes and tubes for machine structural                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| TIS 107-2533                 | Hollow Structural Steel Sections Standard                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|                              | AS 1074 1989 (R2018)<br>JIS G3444:2015<br>JIS G3466:2015<br>JIS G3445:2016<br>ASTM A 500/A500M : 2018<br>ASTM A 1085/A1085M : 2015<br>BS EN 10219-1 : 2006<br>KS D 3566:2016<br>KS D 3566:2016<br>CNS 7141:2014<br>CNS 15727:2014<br>GB/T 6728 : 2017<br>GB/T 6725 : 2017<br>MS 1862:2005 |  |  |  |  |  |  |  |

Note: designation of a strength grade may not reflect the minimum yield strength of the material. American (ASTM) and Japanese (JIS) standards name the grade designation in terms of the minimum <u>tensile</u> strength, not <u>yield</u> strength.

Suitable coil grades are required to produce a given product grade \*\*If constructing cost – critical to include correct coil grade cost for the grade/product cost being constructed

FOR PUBLIC RECORD

Austube

| Product                           | Product Grade               | Suitable HRC Coil<br>Grades       |
|-----------------------------------|-----------------------------|-----------------------------------|
| AS/NZS1163 CHS/Pipe products only | C250L0                      | JIS SPHT2, AS HA250, ASTM<br>SS33 |
| AS/NZS1163 CHS, RHS, SHS          | C350L0                      | JIS SPHT3, AS HA300, ASTM<br>SS40 |
| AS/NZS1163 RHS, SHS               | C450L0                      | JIS SPHT4, AS HA350, ASTM<br>SS50 |
| AS1450 Ovals                      | C350                        | JIS SPHT3, AS HA300, ASTM<br>SS40 |
| AS1074 Pipe products only         | Not Specified min<br>195MPa | JIS SPHT2, AS HA250, ASTM<br>SS33 |

\* Note: rule of thumb there is a 20% strength increase from Coil to finished product

### Coil grade Why is it important?

The increased cost of different strength grades is typically presented as an extra to a base coil price.

FOR PUBLIC RECORD

**Austube**Mills

[Confidential grade extras price list]



# **Date of Sale**

• Invoice date/bill of lading date should be considered date of sale

FOR PUBLIC RECORD

Austube

- Example Kukje :
  - Investigation 177 "Date of shipment is date of sale"
  - Continuation Inquiry 379 "Date of order is date of sale"
  - Review 419 "Date of order is date of sale" (rejected by ADC)
  - Review 529 "Date of shipment is date of sale"



# Export adjustments

#### Kukje – REV 419 EQR:

Since there is no significant difference in packing method between export sales and domestic sales, Kukje has not reported any packing costs for both Australian sales and domestic sales.

- Packaging : HSS is surface critical needs additional protection for export.
  Export packaging cost upward adjustment to NV made for Kukje in REP 379.
- Containerisation : Where exports are packed in containers, these exportspecific costs require an upward adjustment.
- Inland transport : Different ports may be used by an exporter with different transport costs associated.

During the period of investigation, Kukje separately invoiced extra transportation charge for some order, which were not shipped from "Pohang" port. Kukje reported the extra charges, calculated on orderspecific basis, in the column "Other Charges". Kukje EQR Inv 177 at p20



• Purchase of HSS from other domestic or imported source for on-sale?

FOR PUBLIC RECORD

Austube

• Sales of goods outside production capability?



# Verification Challenge:

PUBLIC RECORD

Austub




이 Austube Mills

# Kukje - Korea

#### MCCs reported in EQR:

|          | Market   |          | Pri          | me     | Galva   | nised  |              | Finish         |         | Sh      | аре            | Steel          | grade - Nom       | Min Yield      | Strength              |           | Ends            |                            |
|----------|----------|----------|--------------|--------|---------|--------|--------------|----------------|---------|---------|----------------|----------------|-------------------|----------------|-----------------------|-----------|-----------------|----------------------------|
| Exporter |          | мсс      | P -<br>Prime | N - DG | G - Yes | N - No | O -<br>Oiled | P -<br>Painted | N - NOP | C - CHS | R - RHS<br>SHS | 250 -<br><=300 | 350 -<br>>300<380 | 450 -<br>>=380 | N - Non<br>Structural | P - Plain | T -<br>Threaded | C -<br>Threaded<br>Coupled |
|          |          | PNNC250P | х            |        |         | х      |              |                | х       | Х       |                | Х              |                   |                |                       | Х         |                 |                            |
|          |          | PNNC350P | х            |        |         | Х      |              |                | X       | х       |                |                | X                 |                |                       | Х         |                 |                            |
|          |          | PGNC350P | х            |        | x       |        |              |                | х       | х       |                |                | X                 |                |                       | Х         |                 |                            |
|          |          | PNPC250P | Х            |        |         | Х      |              | Х              |         | Х       |                | Х              |                   |                |                       | Х         |                 |                            |
|          | Aust.    | PNPC350P | х            |        |         | х      |              | Х              |         | х       |                |                | x                 |                |                       | х         |                 |                            |
|          | Aust.    | PNNR350P | х            |        |         | х      |              |                | х       |         | X              |                | x                 |                |                       | х         |                 |                            |
|          |          | PGNR350P | х            |        | x       |        |              |                | х       |         | X              |                | x                 |                |                       | Х         |                 |                            |
|          |          | PNPR350P | х            |        |         | х      |              | Х              |         |         | X              |                | x                 |                |                       | Х         |                 |                            |
|          |          | PNPCNP   | х            |        |         | х      |              | Х              |         | х       |                |                |                   |                | x                     | х         |                 |                            |
|          |          | PNPCNT   | х            |        |         | х      |              | Х              |         | Х       |                |                |                   |                | x                     |           | Х               |                            |
|          |          | PNNC250P | х            |        |         | х      |              |                | Х       | Х       |                | х              |                   |                |                       | Х         |                 |                            |
| ~        |          | PNNC350P | х            |        |         | х      |              |                | Х       | х       |                |                | x                 |                |                       | Х         |                 |                            |
| 2        |          | PGNC350P | х            |        | X       |        |              |                | Х       | х       |                |                | x                 |                |                       | Х         |                 |                            |
| (je      |          | NGNC350P |              | X      | X       |        |              |                | Х       | х       |                |                | x                 |                |                       | Х         |                 |                            |
| Kukje KR |          | PNNR350P | х            |        |         | х      |              |                | Х       |         | х              |                | x                 |                |                       | Х         |                 |                            |
| -        |          | PNNR250P | х            |        |         | х      |              |                | х       |         | X              | х              |                   |                |                       | х         |                 |                            |
|          |          | NNNR250P |              | X      |         | х      |              |                | х       |         | x              | х              |                   |                |                       | х         |                 |                            |
|          |          | NNNR350P |              | X      |         | х      |              |                | х       |         | x              |                | x                 |                |                       | х         |                 |                            |
|          | Domestic | PGNR350P | х            |        | x       |        |              |                | х       |         | x              |                | x                 |                |                       | х         |                 |                            |
|          |          | NGNR350P |              | X      | x       |        |              |                | х       |         | X              |                | x                 |                |                       | х         |                 |                            |
|          |          | PNPR350P | х            |        |         | х      |              | Х              |         |         | X              |                | х                 |                |                       | х         |                 |                            |
|          |          | PNNCNP   | х            |        |         | х      |              |                | х       | х       |                |                |                   |                | X                     | х         |                 |                            |
|          |          | PGNCNP   | х            |        | x       |        |              |                | х       | х       |                |                |                   |                | X                     | х         |                 |                            |
|          |          | PNNRNP   | х            |        |         | х      |              |                | х       |         | X              |                |                   |                | x                     | х         |                 |                            |
|          |          | PGNRNP   | х            |        | X       |        |              |                | х       |         | х              |                |                   |                | x                     | х         |                 |                            |
|          |          | NNNCNP   |              | X      |         | х      |              |                | х       | х       |                |                |                   |                | X                     | х         |                 |                            |
|          |          | NGNCNP   |              | x      | x       |        |              |                | х       | х       |                |                |                   |                | X                     | х         |                 |                            |

# Kukje - Korea



FOR PUBLIC RECORD

# Coil costs allocation – averaging?

EQR G6.2 pg 38

Please see Attachment G-4 Cost Calculation of the Largest Production Volume Sold in the Domestic Market. Actually, Kukje provided the cost calculation for all models produced during the investigation period.

Review 419 EQR pg 40:

Second, Kukje calculates the raw material cost by the coil's grade (such as HR, HGI, PO etc.) without considering the specification of the coil. Rather, Kukje considers all the skelp has the same unit price regardless of the coil's grade.

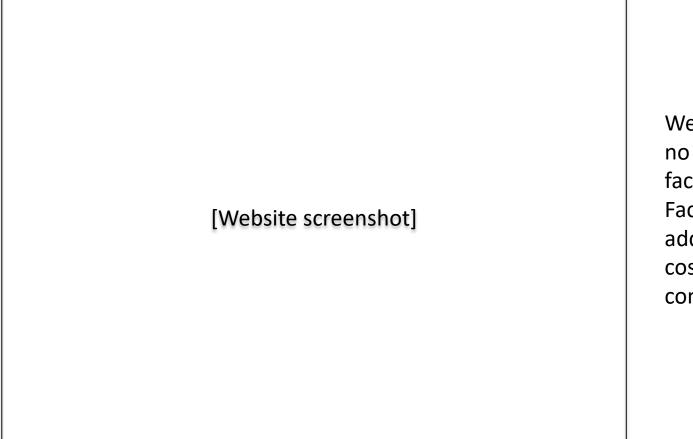
Fourth, Kukje does not calculate the cost of painted pipe separately. Rather, the paint costs are allocated to non-painted products.

- Pre-gal HRC vs regular HRC must be separated for costing purposes. If this is averaged it could severely distort the CTMS.
- Paint cost must only be applied to painted product which is predominantly applied to export sales.

# Kukje - Korea



OR PUBLIC RECORD


### Cost allocation – incomplete? REV 419 EQR pg 7

None of steel scraps generated at the slitting and forming stage of production are re-inputted into the production process, but are sold to unaffiliated purchasers. In the normal cost accounting system, however, Kukje does not evaluate the steel scrap cost. Rather, it recognizes income when it sells them.

- Scrap costs/yield losses not taken into account in CTMS.
- Ensure steel cost is the actual steel consumed which is approx XX% higher than actual finished product weight (XX% mill yield loss and X% slitter yield loss). Simply applying the coil cost per t to the finished product weight is not correct.



### Additional freight costs for painted HSS?



Website shows no painting facilities. Factor in additional freight costs to painting contractor/s.

FOR PUBLIC RECORD

**Austube**Mills

# **Thai Premium Pipe - Thailand**

# Clarify MCC's – does "P" mean actually painted or just coated with oil or clear varnish?

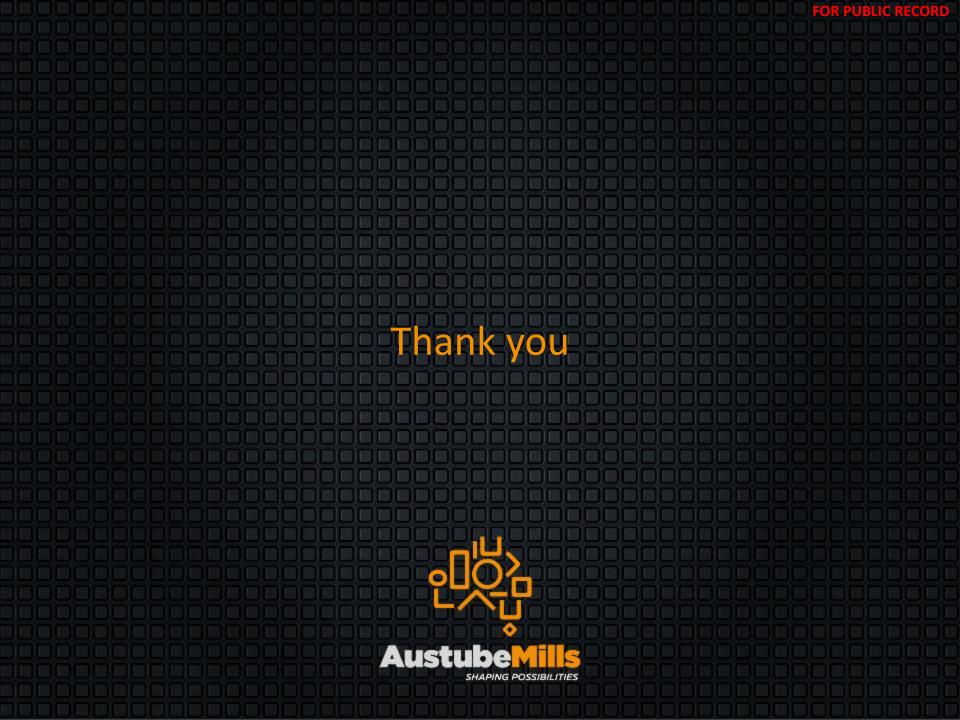
PUBLIC RECORD

AustubeMil

|              | Market<br>Aust.<br>Domestic |          | Prime        |        | Galvanised |        |              | Finish         |         | Sh      | аре            | Steel          | grade - Nom       | Min Yield      | Strength              | Ends      |                 |                            |
|--------------|-----------------------------|----------|--------------|--------|------------|--------|--------------|----------------|---------|---------|----------------|----------------|-------------------|----------------|-----------------------|-----------|-----------------|----------------------------|
| Exporter     |                             | мсс      | P -<br>Prime | N - DG | G - Yes    | N - No | 0 -<br>Oiled | P -<br>Painted | N - NOP | C - CHS | R - RHS<br>SHS | 250 -<br><=300 | 350 -<br>>300<380 | 450 -<br>>=380 | N - Non<br>Structural | P - Plain | T -<br>Threaded | C -<br>Threaded<br>Coupled |
|              | Aust.                       | PPNR350P | х            |        |            | Р      |              |                | Х       |         | Х              |                | X                 |                |                       | X         |                 |                            |
|              | Aust.                       | PNPR350P | x            |        |            | Х      |              | Х              |         |         | Х              |                | X                 |                |                       | X         |                 |                            |
|              |                             | NNNC250P |              | X      |            | X      |              |                | X       | X       |                | x              |                   |                |                       | x         |                 |                            |
|              |                             | NNNC350P |              | X      |            | X      |              |                | X       | Х       |                |                | X                 |                |                       | X         |                 |                            |
|              |                             | NNOC250P |              | X      |            | X      | X            |                |         | Х       |                | X              |                   |                |                       | X         |                 |                            |
| <b>—</b>     |                             | NNOR250P |              | X      |            | X      | X            |                |         |         | X              | х              |                   |                |                       | X         |                 |                            |
| E            |                             | NNOR350P |              | X      |            | X      | X            |                |         |         | X              |                | X                 |                |                       | X         |                 |                            |
| Premium Pipe |                             | NNPR250P |              | X      |            | X      |              | Х              |         |         | X              | X              |                   |                |                       | X         |                 |                            |
| - d          |                             | NNPR350P |              | X      |            | Х      |              | Х              |         |         | X              |                | X                 |                |                       | X         |                 |                            |
| 5            |                             | NPNC250P |              | X      |            | Р      |              |                | Х       | Х       |                | Х              |                   |                |                       | X         |                 |                            |
| Ē            | Domestic                    | NPNR250P |              | X      |            | Р      |              |                | Х       |         | X              | Х              |                   |                |                       | X         |                 |                            |
| e            | Domestic                    | NPOR250P |              | X      |            | Р      | Х            |                |         |         | X              | Х              |                   |                |                       | X         |                 |                            |
| i i          |                             | PNOC250P | X            |        |            | Х      | Х            |                |         | Х       |                | Х              |                   |                |                       | X         |                 |                            |
| Thai         |                             | PNOC350P | Х            |        |            | Х      | Х            |                |         | Х       |                |                | X                 |                |                       | X         |                 |                            |
|              |                             | PNOR250P | X            |        |            | Х      | Х            |                |         |         | X              | X              |                   |                |                       | X         |                 |                            |
|              |                             | PNOR350P | X            |        |            | Х      | Х            |                |         |         | X              |                | X                 |                |                       | X         |                 |                            |
|              |                             | PNPC250P | Х            |        |            | Х      |              | Х              |         | Х       |                | Х              |                   |                |                       | X         |                 |                            |
|              |                             | PNPC350P | X            |        |            | Х      |              | Х              |         | Х       |                |                | X                 |                |                       | X         |                 |                            |
|              |                             | PNPR250P | X            |        |            | Х      |              | Х              |         |         | Х              | Х              |                   |                |                       | X         |                 |                            |
|              |                             | PNPR350P | X            |        |            | Х      |              | Х              |         |         | Х              |                | X                 |                |                       | X         |                 |                            |



# Tianjin Youfa - China


# Adjustment for narrow strip over HRC

ADRP Report 2018/88 (Review 419 decision):

- 165. The predominant issue in dispute between the parties resolves around the relative costs to be attributed three of Tianjin Youfa's raw material inputs of:
  - structural grade HRC;
  - nonstructural grade HRC; and
  - narrow strip, which can only produce nonstructural grade goods.

Tianjin Youfa in effect argues that the above three main raw material inputs reflects a hierarchy of decreasing costs, with structural grade the most expensive and narrow strip the least expensive of the three. It is the <u>Commission's position</u>, based upon its analysis of Tianjin Youfa's own production data, that evidence does <u>not support the existence of such a hierarchy and that there is little</u>, or immaterial difference in the costs of <u>nonstructural grade and narrow strip</u>.

**169.** Further, the Commission mapped purchases of structural and nonstructural grade product by quarter and found, in two of the four quarters for the Review Period, the purchase prices of the nonstructural grade had higher unit prices than structural grade. Based upon this analysis, <u>the Commission considers that the purchase prices of structural and nonstructural grade by do not support a finding that there is a consistent or material price difference between structural and nonstructural HRC such as to warrant separate adjustments being made for each. I agree with the Commission's analysis and conclusion. In doing so I acknowledge the majority of Tianjin Youfa's purchases of nonstructural grade was in the form of narrow strip.</u>

