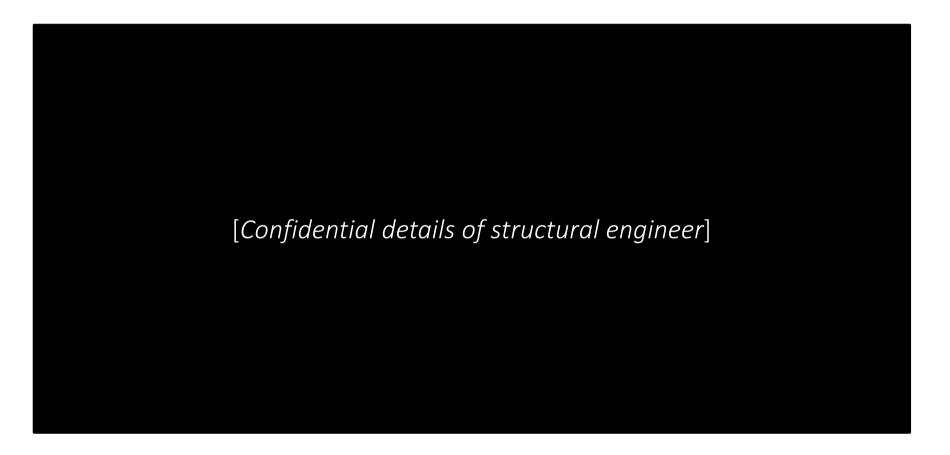


MODEL MATCHING CONCERNS Meeting with Anti-Dumping Commission

Melbourne 27 June 2019

libertygfg.com


MEMBER OF

PUBLIC RECORD

Introduction: [Name – structural engineer]

PUBLIC RECORD LIBERTY

- Accurate and transparent model matching is fundamental to the integrity of the anti-dumping system as it determines whether a fair comparison is made between the export price and the normal value.
 - Fundamental to determining if dumping has occurred.
 - If dumping is found to have occurred, accurate model matching also determines the level to which measures should be imposed to remove injury caused by dumping to Australian manufacturers and producers.

PUBLIC RECORD

Model Control Codes

- Australian industry players generally supportive (Australian Paper, BlueScope, Capral, Liberty Steel), subject to:
 - Fundamentally technically correct
 - Being consistently applied
 - Forming the basis for EQR responses
 - Proposed changes open for consultation
 - Being transparent

PUBLIC RECORD

Model Control Codes

- > Concerns
 - Commission doesn't have the technical/market knowledge across all product groups to make a proper assessment of models.
 - > Errors in MCC classification driving incorrect dumping margin outcomes
 - > Not transparent with no steel grade disclosure
 - Exporter changes to MCC categories readily accepted without opportunity for Aust Industry to contest.
 - Not clear if/how exporter MCC classification has been verified (test certificates or Standards, mandatory or optional criteria?)
 - > No direct match across MCC categories driving a move to constructed NV
 - Errors in model matching are unable to be remedied by the ADRP as they also don't possess the technical knowledge required.
 - (examples include: INV 495, REV 486 & 489, REV 499 & CONT 505)

Model Matching

Basic criteria for long steel products affecting price comparability

- Shape/form
- Size
- Grade
 - <u>Minimum</u> yield strength (as specified by Standard)
 - Chemistry control for welding (carbon equivalent value specified by Standard OR maximums specified for chemical elements <u>particularly carbon and manganese</u>)

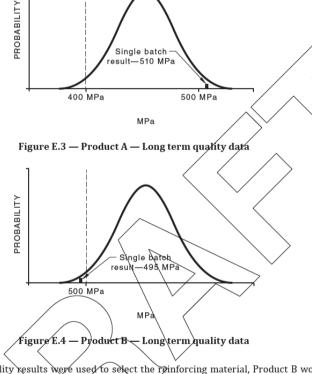
When assessing the most comparable domestically sold grade/s to the export grade:

- 1. Compare Standard to Standard (minimum yield strength, chemistry control/CE) (PREFERRED)
- 2. DO NOT compare domestic sales test certificates with the export Standard

Model Matching

DR AS/NZS 4671:2019

44


E.4 Test certificates

The minimum requirements for manufacturing reports and certificates (when supplied) are covered in <u>Clause 10.4</u>. The long term quality data for the facility making a particular product may be included in the certificate, but the certificate must include a statement that the products supplied conform to the requirements of this Standard. This is recognition that long term test data are the most significant criteria to determine whether the tensile properties meet the product conformity requirements of this Standard.

The request for or supply of a batch test report, which relates only to a specific element of reinforcing steel, is not recommended and the reasons for this are explained in the text above. It would be relevant only if the manufacturer has not established a long-term quality data set. In such cases the minimum test results would be those from type testing.

© Standards Australia Limited 2019

LIC COMMENTING DRAF

If the long-term quality results were used to select the reinforcing material, Product B would be the clear choice as it meets both the product conformity requirements of this Standard and the design methodology of AS 3600. The long-term quality test results for Product A indicates that the facility is actually making 400 MPa product and the single test results for Product A indicates that the facility making that product. The long-term quality test results for Product B indicates that the facility is making 500 MPa product. While the single test results for Product B indicates that the facility making product, which exceeds the C_{vL} of 500 MRa with at least 95% probability. Furthermore, the long-term quality results for Product B indicates that it is consistent with the probabilistic design methodology employed in other Standards.

Reference - Chemistry control for welding

SteelConstruction.info

The free encyclopedia for UK steel construction information

- "All structural steels are essentially weldable. However, welding involves locally melting the steel, which subsequently cools. The cooling can be quite fast because the surrounding material, e.g. the beam, offers a large 'heat sink' and the weld (and the heat introduced) is usually relatively small. This can lead to hardening of the 'heat affected zone' (HAZ) and to reduced toughness. The greater the thickness of material, the greater the reduction of toughness.
- The susceptibility to embrittlement also depends on the alloying elements principally, but not exclusively, the carbon content. This susceptibility can be expressed as the 'Carbon Equivalent Value' (CEV), and the various product standards for carbon steels standard give expressions for determining this value."

$$CE = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Ni + Cu}{15}$$

Comparing "carbon content" is meaningless, carbon equivalent takes other key chemical elements into account also.

Meeting with ADC – Model Matching – June 2019 8

PUBLIC RECORD

WLIBERTY

Example 1: Grade classification by exporters complex and difficult to LIBERTY

Tung Ho Submission EPR499/008 – Liberty Steel notified incorrect classification at briefing

Identifier	Sub-category
2	Carbon steel for general structure
	(SS400, A36, A709G36 <mark>,</mark> 3679G300,
	G30050, S235JR, S275JR, S275J0,
	ABSGA)
4	Carbon steel for welded structure
	(SM400A, SM400B)
5	Alloy steel for welded structure
	(SM490A, SM490B, SM490BD,
	SM490BM, SM490YA, A572Gr50,
	A572G50A, A572G50B, A992, A992M,
	A709G50, G350L0, S355JR,
	\$355JO, \$355J2, \$450JO, BVAH32)
6	Carbon steel for building structure
	(SN400A, SN400B, SN400BF)
7	Alloy steel for building structure
	(SN490B, SN490BD, SN490C)

- Incorrect classification of 3679G300 for welded structure, not general structure.
- SS-grades for general structure, no chemistry control required (no CE or maximums for C, Si, Mn)
 - SM-grades for welding, must control chemistry (limits on elements C, Si, Mn or has CE)

Lack of technical knowledge and ability to easily assess the extensive lists of grades provided by the exporters means that the Commission is accepting incorrect propositions.

Exporters urging the Commission to not re-visit the grade sort/match for the sake of consistency with previous investigations even if findings were incorrect.

The above have been verified by the Commission's verification teams in the original investigation and subsequent review of measures inquiry, together with subject of numerous submissions to counter opportunistic attempts by the applicant to have higher value/cost goods compared to goods exported to Australia.

LIBERTY STEEL

Example 2: Grade classification by exporters not corrected when wrong

Example (499/505): Dragon Steel EQR

"The only steel grade sold to Australia in POR is AS/NZS 3679.1:2016-300, of the general structural steel application."

For domestic models:

"Steel grades for the applications of general structure, welded structure, building structure, and High-Strength Low-Alloy Columbium-Vanadium Structural Steel were sold in domestic market in POR. The specifications include:

Grade SS400 which has no chemical spec for C, Si, Mn and a min yield strength well below 300MPa considered by exporter to be best match for Grade 300. Without disclosure, assumed to be accepted by Commission?

Application	Specification
General structural steel	JIS SS400 · CNS SS400 · ASTM A36
Rolled Steels for Welded Structure	CNS SM400B > JIS SM490A
Rolled Steel for Building Structure	CNS SN400YB · CNS SN490YB · CNS SN400B · CNS SN490B · CNS SN490B MOD
High-Strength Low-Alloy Columbium-Vanadium Structural Steel	ASTM A572 GR.50

Example 3: Changes to MCCs on basis of claims of better alignment with the Australian Standard accepted when wrong

Tung Ho Steel Verification Report (499 & 505)

"Tung Ho changed the 'thickness' category of the MCC for the purposes of the verification. The original MCC category for thickness has two categories: minimum cross sectional thickness less than 11mm or, greater than or equal to 11mm. Tung Ho changed this to minimum cross sectional thickness less than 12mm or, greater than or equal to 12mm <u>to align with the Australian standard</u>. The verification team accepted this amendment." [Incorrect – Australian Standard uses 11mm thickness]

"For weldability, Tung Ho identified the 'steel grade' (carbon or alloy) and use (building structure or welded structure) and said that these affected price. The verification team considered that it was appropriate to accept this amendment because it would result in more accurate comparison of models." [Incorrect]

Commission MCC's for HRS

Prime	Non- Prime	Shape				-	d strength 1pa)	N	∕lin tensile st	rength (Mp	a)	Thickne	ss (mm)	Dimensi	on (mm)	Weld	ability
									>=400 to	>=450 to							
		UB 'I'	UC 'H'	Channels	Angles	<265	>=265	<400MPa	<450	<500	>=500	<11	>=11	<230	>=230	Ceq	No Ceq
Р	N	-	Н	С	А	А	В	Α	В	С	D	1	2	S	L	Y	N

A prime example of why an independent technical expert needs to be engaged at the outset of the investigation

Tung Ho MCC changes - domestic models

	Non-					Min yiel	d strength																			
Prime	Prime		Sh	ape		(N	1pa)	N	/lin tensile s	trength (Mp	a)	Thickne	ss (mm)				Dimensi	on (mm)						Weldability	Y	
														UB	UB	UC	UC					Carbon	Carbon	Carbon	Alloy Steel	Alloy
														Narrow	Wide	Narrow	Narrow			Tapered	Running	Steel for	Steel for	Steel For	for	steel for
									>=400 to	>=450 to				Flange	Flange	Flange	Flange	Channel	Channel	Flange	Rail for	General	Welded	Building	Welded	Building
		UB 'I'	UC 'H'	Channels	Angles	<265	>=265	<400MPa	<450	<500	>=500	<12	>=12	W<230	W>=230	W<360	W>=360	Standard	Heavy	Beam	MTR	Structure	Structure	Structure	Structure	Structure
Р	N		Н	С	A	А	В	А	В	С	D	1	2	1	2	3	4	5	6	7	8	2	4	6	5	7
								• •		•															/	

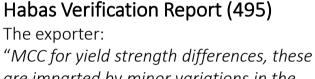
PUBL	IC I	REC	COF	RD
Ù	LII	BEI	RT	Y

Reference

Liberty submission

(499 & 505) :

Tung Ho grade


assessment against

specifications

lentifier	Sub-category	Grades	Standard	Standard Description	Min yield strength MF
		SS400	CNS 2473 G3039-103 and JIS G3101-2010	Rolled steels for general structure	235-24
		A36	ASTM A 36-08	Carbon structural steel	255-24
		A 709G36	ASTM A 709-11	Specification for structural steels for bridges	250
	Minimum Yield	\$235JR	BS EN 10025-2:2004	Hot-rolled products of structural steel	225-23
1	Strength < 265MPa				
	Strength < 205WFa	SM400A	CNS 2497 G3057-103 and JIS G3106-2008	Rolled steels for welded structure	235-24
		SM400B	CNS 2497 G3057-103 and JIS G3106-2008	Rolled steels for welded structure	235-24
		SN400A	CNS 13812 G3262-103 and JIS G3136-2012	Rolled steels for building structure	235
		SN400B	CNS 13812 G3262-103 and JIS G3136-2012	Rolled steels for building structure	235-35
		SN400BF	?? Not in Standard/Tung Ho spec		235?
		S275JR	BS EN 10025-2:2004	Hot-rolled products of structural steel	265-27
		S275J0	BS EN 10025-2:2004	Hot-rolled products of structural steel	265-27
		3679G300	AS/NZS 3679.1	Structural steel Part 1: Hot-rolled bars and sections	280-32
		G300S0	AS/NZS 3679.1	Structural steel Part 1: Hot-rolled bars and sections	280-32
	ſ	SM490A	CNS 2497 G3057-103 and JIS G3106-2008	Rolled steels for welded structure	325
Thora	grades exceed	SM490B	CNS 2497 G3057-103 and JIS G3106-2008	Rolled steels for welded structure	325
	nimum vield	SM490BD	?? Not in Standard/Tung Ho spec		325?
		SM490BM	?? Not in Standard/Tung Ho spec		325?
-	th of 280MPa	SN490B	CNS 13812 G3262-103 and JIS G3136-2012	Rolled steels for building structure	325-44
3679G	300 and	SN490BD	?? Not in Standard/Tung Ho spec		325?
3679G	30050				
	ı l	SN490C	CNS 13812 G3262-103 and JIS G3136-2012	Rolled steels for building structure	295-44
		G350L0	AS/NZS 3679.1	Structural steel Part 1: Hot-rolled bars and sections	330-36
	Γ	A 709G50	ASTM A 709-11	Specification for structural steels for bridges	345
2	Minimum Yield Strength >=265MPa	\$355JR	BS EN 10025-2:2004	Hot-rolled products of structural steel	355
		\$35510	BS EN 10025-2:2004	Hot-rolled products of structural steel	355
the min	grades exceed nimum yield	\$355J2	BS EN 10025-2:2004	Hot-rolled products of structural steel	355
-	h of 330MPa	SM490YA	CNS 2497 G3057-103 and JIS G3106-2008	Rolled steels for welded structure	365
require 3679G	ed for grade 350L0	S45QIO	BS EN 10025-2:2004	Hot-rolled products of structural steel	450
		A 572Gr50 (type1?)	ASTM A 572-07	High-strength low-alloy columbium-vanadium structural steel	345
		A 572G50A (type 2?)	ASTM A 572-07	High-strength low-alloy columbium-vanadium structural steel	345
				High-strength low-alloy columbium-vanadium structural	-
		A 572G50B (type 3?)	ASTM A 572-07	steel	345
	L	A992/A992M	ASTM A992-11	Specification for structural steel shapes	345-45
	These are plate	ABSGA	ABS (American Bureau of Shipping)	Grade A - common strength shipbuilding steel plate	
	grades for		Bureau Veritas qualification for		
	shipbuilding hulls - if	0.10.000	shipbuilding	Grade AH32 - high strength shipbuilding steel plate	

LIBERTY STEEL

Example 4: Different yield strength grades classified in a single category accepted by Commission due to similar <u>cost</u>

are imparted by minor variations in the quenching process which are not separately costed."

"<u>Habaş sees no reason to differentiate</u> <u>between the MCC's B and C in the yield</u> <u>strength category of the MCCs</u> for like goods comparison."

	Domesti	c sales mode	ls - Haba	s		
	Prime	Non-Prime		Min yield	d strength	
			<=300	300-480	>480-550	>=550
	Р	N	А	В	С	D
1	Х		х			
2	х			Х		
3	х			Х		
4	х			Х		
5	х			Х		
6	х			Х		
7	х			Х		
8	х			Х		
9	х			Х		
10	х			Х		
_	Export	ales models -	Habac			
	Prime	Non-Prime	navas	Min vielo	d strength	
			<=300	300-480	>480-550	>=550
_	Р	N	Α	В	С	D
1	х				х	
2	х				Х	
3	х				х	
4	х				Х	
5	х				х	
6	X				X	
7	X				X	

Commission finding in verification report: *"For the all seven of the export MCCs there [SIC] domestic market, there were no sales of identical like goods in the necessary specification yield strength, i.e. category C."*

<u>Outcome</u>: Impaired ability to assess whether there were in fact any suitable domestic sales in Category C, thereby keep within a TAC(1) normal value methodology.

PUBLIC RECORD

LIBERTY

Example 5: Grade match done using domestic mill test certificates compared against export grade Standard requirements

Statements made in REP223 show extent of lack of technical understanding that lead to incorrect grade/model matches. Technical errors are unable to be remedied by the ADRP

REP 223 (HRS):

"Dr Hicks concluded that when both mechanical properties and chemical composition are considered, the products closest to the steel grades to G300 (AS/NZ 3679.1) are grades SM490B and SM490C (JIS 3106) and SN490B and SN490C (JIS 3136)."

"In this investigation, the Commission does not accept that like goods can be determined in the **narrow context of one physical characteristic, that being standards.** The Commission's view is that standards are one relevant physical characteristic of HRS, as part of a broader range of physical characteristics to consider when assessing physical likeness." "To accept OneSteel's contention, that is, establishing normal values primarily guided by a comparison of standards would be to disregard the evidence obtained during the course of exporter verification in the form of mill certificates. These certificates contain evidence of mechanical properties and chemical composition of the goods which establishes the actual physical specifications to which the goods are produced and sold. These certificates were important in establishing whether the physical characteristics of the goods produced in the domestic market are sufficiently similar to those produced for export sale for normal value purposes."

Example 5 (contd): Grade match done using domestic mill test certificates compared against export grade Standard requirements <u>REV499/CONT505</u>:

SYS Verification report

"SYS further claimed that the MPa should be based on actual yield strength as denoted on the mill test certificate, which they had supplied details of for every sale."

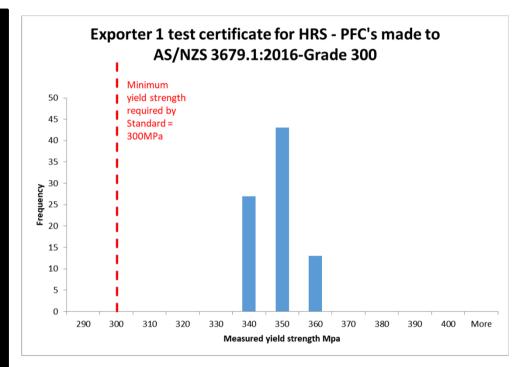
"Having considered the evidence presented by SYS, the verification team considers that the MCC categories for yield strength should be based on the minimum yield strength in the relevant standard, not the actual strength on the MTC. This is because customers buy on the basis of the standard that the HRS meets, rather than the actual MTC results."

Tung Ho Verification report

Minimum yield strength This category was not used for model matching as all the goods sold by Tung Ho were > 265MPa. The verification team reviewed test certificates for selected samples and concluded that this was correct.

Standards comparison is the only feasible option for all aspects of a technical grade match assessment. Exporters will argue that mill test certificates should be used.

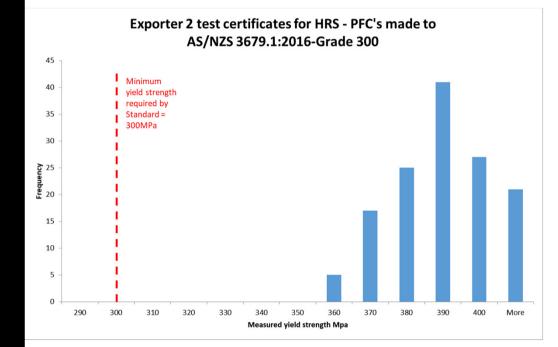
Can <u>NOT</u> assess domestic grade test certificates against export grade Standard requirements – apples and oranges.



PUBLIC RECORD

Model Matching : Test certificates

[Confidential: Test Certificate Exporter 1]



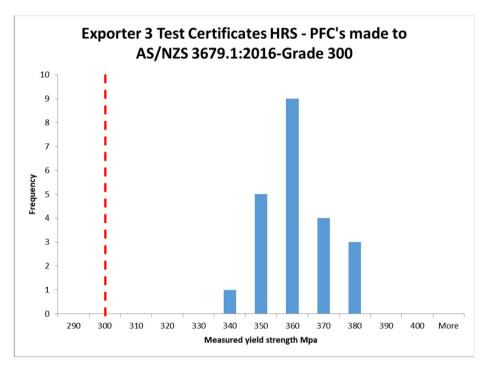
- 7 test certificates
- 84 test results

Model Matching: Test certificates

[Confidential: Test Certificate Exporter 2]

- 13 test certificates
- 137 test results

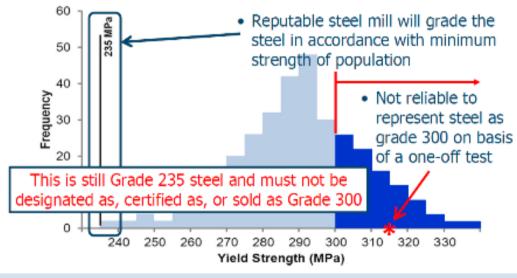
17 Meeting with ADC – Model Matching – June 2019


PUBLIC RECORD

WLIBERTY

Model Matching : Test certificates

[Confidential: Test Certificate Exporter 3]


- 2 test certificates
- 23 test results

Model Matching: test certificates

Grading by test

- In a typical steel mill, single heat 100+ tonnes
 - Rolled to give ~3000m of product
 - Statistical distribution of strengths

<image><image><image><image><section-header><section-header><section-header><section-header><section-header>

PUBLIC RECORD

37

Up-grading

- Supplier has a manufacturer's mill certificate stating one strength grade (e.g. grade 300)
- But tensile test values on that certificate suggest that the batch might meet the requirements of a higher strength grade (e.g. grade 350)

 MECHAI Tensile	VICAL TE	STING			0		
Ibern No	Heat No	Tested	NATA Lab	Test Report	ReH MEa	Rm MPa	ELONGN S6
1606C 1808C 1808C	517049 517049 517050	517049 517049 517050	0794 0794 0794	51643 51643 51649	375 380 385	530 530 530	35 34 36
				51643 51643			36 36 36

19 Meeting with ADC – Model Matching – June 2019

LIBERTY STEEL

Example 6: No disclosure provided on nature of exporter changes to MCC category

"DSC included mandatory MCC categories prime, shape and minimum yield strength <u>and an additional category "Section" to reflect</u> the different groups of combination of height and width of the cross-section of H-section. DSC stated this category has an effect on the cost of production and selling prices."

P-H-A-01	P-H-A-13	P-H-B-03	P-H-B-15
P-H-A-02	P-H-A-14	P-H-B-04	P-H-B-16
P-H-A-03	P-H-A-15	P-H-B-05	P-H-B-17
P-H-A-04	P-H-A-16	P-H-B-06	P-H-B-18
P-H-A-05	P-H-A-17	P-H-B-07	P-H-B-19
P-H-A-06	P-H-A-18	P-H-B-08	P-H-B-20
P-H-A-07	P-H-A-19	P-H-B-09	P-H-B-21
P-H-A-08	P-H-A-20	P-H-B-10	P-H-B-22
P-H-A-09	P-H-A-21	P-H-B-11	
P-H-A-10	P-H-A-22	P-H-B-12	
P-H-A-11	P-H-B-01	P-H-B-13	
P-H-A-12	P-H-B-02	P-H-B-14	

No information provided on what this additional category "Section" comprises, only numbers 1-22 included in the domestic sales MCC's.

Permits the exporter to exclude a large number of domestic sales from comparison to the export sales – capable of manipulation?

PUBLIC RECORD

Example 7: Carbon content confused with carbon equivalent

REP 486 & 489 (Review – Rebar ex Korea & Taiwan)

For Korea:

"Grade type incorporates standards, yield strength and carbon content differences. Grades of domestic and exported goods compared. Grade used to distinguish goods and determine price."

Example 8: Commission accepts domestic sales are alloyed and export sales are not – EQR shows alloys for both

REP 486 & 489 and EQR for Wei Chih (Review – Rebar ex Korea & Taiwan)

For Taiwan:

"The Commission's analysis shows that models S420 to S420W differ in chemical composition and grade standards to the export model; **domestic models include strengthening alloys whilst the export model is water quenched; and the domestic models do not meet Australian standards.** The Commission therefore affirms the views set out in subsection 4.5.3 that there were not sufficient volumes of sales of domestic models appropriately comparable to the models Wei Chih exported to Australia.

MCC	Exported to Australia		MCC	Domestic market
Quality (Prime/ non prime)	Prime	Niobium &	Quality (Prime/ non prime)	Prime
Production method	Water quenched	vanadium are	Production method	Hot rolled
Form (Straight or coil)	Straight		Form (Straight or coil)	Straight
Diameter	12-40mm	both alloys used	Diameter	#3-#10
Length	6-12m	for	Length	9.5-18m
Deformation type	Ribbed		Deformation type	Ribbed
Grade (mpa)	500-650 mpa	strengthening		Min 420 and 550 mpa
Specification standard	AS/NZS 4671:2001		Grade (mpa) Specification standard	CNS 560
Grade	500N			
Ductility	Normal		Ductility	Normal
Alloy and alloy content	Nb:0.024-0.028% and		Alloy	Vanadium (for SD420W only)
,	Nb:0.026-0.030%		Carbon Content	0.32% (for SD420W) & 0% (for SD280)
Carbon Content	0.24% max		Sales Quantity method	actual weight
Sales Quantity method	actual weight and theoretical weight	ght	Coating	No coating
Coating	No coating			

PUBLIC RECORD

For Reference https://www.oakleysteel.co.uk/niobium-microalloyed-structural-steels

NIOBIUM MICROALLOYED STEELS

A <u>microalloyed steel</u> contains small amounts of alloying elements (0.02-0.1 wt%), such as niobium, vanadium, titanium, molybdenum, zirconium and boron. These small percentages of alloying elements have a significant impact on many important properties for engineering applications. Adding niobium to steel causes the formation of niobium carbide and niobium nitride within the structure of the steel. These compounds improve the grain refining, retardation of recrystallization, and precipitation hardening of the steel which increase the toughness, strength, formability, and weldability of the microalloyed steel.

Example 9: Lack of fundamental understanding of production processes

PUBLIC RECORD

Verification Report for Wei Chih (Review – Rebar ex Korea & Taiwan)

For Taiwan:

"Goods made to the Taiwanese standard are hot rolled. Goods made to the Australian standard are water quenched."

They are all produced through a hot-rolling process. Some go through a rapid quench in the final stages of the hot-rolling process.

Example 10: Mandatory MCC criteria not applied – assessment criteria driven by exporter data representation

Example : REV499 & CONT 505

ltem	Category	Sub-category	Identifier	Sales data	Cost data	Key category							
1	Prime	Prime	Р	Mandatory	Not	Yes							
	1 mile	Non-prime	N	Manuatory	applicable	163							
		Universal Beams ('I' sections)	1										
2	Shape	Universal Columns and Universal Bearing Piles ('H' sections)	Н	Mandatory	Mandatany	Yes							
2	Shape	Channels ('U' or 'C' sections)	С	Mandatory	Mandatory	Tes							
		Angles (Equal and Unequal Angle sections)	А										
3	Minimum yield	Less than 265 MPa	А	Mandatory	Mandatory	Yes							
3	strength	Greater than or equal to 265 MPa	В	Mandatory	Mandatory	res							
	\frown	Less than 400 MPa	А										
4	Tensile	Tensile	Tensile	Tensile				Tensile	Greater than or equal to 400 MPa and less than 450 MPa	В	Ontional	Optional	No
4	strength	Greater than or equal to 450 MPa and less than 500 MPa	С	Optional	Optional	INO							
		Greater than or equal to 500 MPa	D										
5	Thickness	Minimum cross-sectional thickness less than 11mm	1	Ontional	Ontional	No							
5	Thickness	Minimum cross-sectional thickness greater than or equal to11mm	2	Optional	Optional	INO							
6	Dimension	Beam or section height less than 230 mm	S	Ontional	Ontional	No							
0	Dimension	Beam or section height equal to or greater than 230 mm	L	Optional	Optional	NO							
7	Woldshility	Carbon equivalent value specified in relevant standard	Y	Ontional	Ontional	No							
	Weldability	Carbon equivalent value not specified in relevant standard	Ν	Optional	Optional	NO							

PUBLIC RECORD

When an exporter claims "tensile strength is more important to consider than yield strength" what does the Commission do?

When an exporter goes to great lengths to define 8 categories under "dimension" and 5 categories under "weldability", does minimum yield strength remain the key consideration in grade classification assessment?

25 Meeting with ADC – Model Matching – June 2019

LIBERTY STEEL

Error 9: Mandatory MCC criteria not applied – assessment criteria driven by exporter data representation

Example : REV499 & CONT 505

Category	Characteristics of Category & Rationale for Model Matching	Used in Model Matching
Prime	Prime or non-prime. This category was included by SYS however it is noted that all goods sold by SYS during the review period were prime.	Y
Shape	The category of shape aligned to the MCC structure. The verification team identified that shape affects the end use of the goods in construction projects.	Y
Minimum yield strength	The category of minimum yield strength aligned to the MCC structure. The verification team identified during the verification that yield strength was a primary factor considered by customers when determining suitability of steel for a project, in conjunction with price considerations.	Ø

Category	Characteristics of Category & Rationale for Model Matching	Used in Model Matching
Prime	Prime or non-prime. This category was not used in model matching as all the goods sold by Tung Ho were prime.	N
Shape	The characteristics of shape is aligned with the MCC structure. The verification team did not identify information to suggest that any of these characteristics do not have an effect on price.	Y
Minimum yield strength	This category was not used for model matching as all the goods sold by Tung Ho were > 265MPa. The verification team reviewed test certificates for selected samples and concluded that this was correct.	
Thickness	Tung Ho modified the MCC structure for this category to a minimum cross-sectional thickness less than 12mm, or minimum cross-sectional thickness greater than or equal to 12mm. The verification team did not identify information to suggest that any of these characteristics do not have an effect on price.	Y
Dimension	Tung Ho amended this category (see discussion at 2.2). The verification team did not identify information to suggest that any of these characteristics do not have an effect on price.	Y
Weldability	Tung Ho amended this category (see discussion at 2.2). The verification team did not identify information to suggest that any of these characteristics do not have an effect on price.	Ø

Inconsistent approach across exporters even within the same country.

No disclosure of grades considered best match means no clarity for industry on what has been done – no reasonable opportunity to challenge.

Category	Characteristics of Category & Rationale for Model Matching	Used in Model Matching
Prime	Prime or non-prime. This category was included by Hyundai Steel however it is noted that all goods sold by Hyundai Steel during the review period were prime.	No
Shape	The category of shape aligned to the MCC structure. The verification team did not identify any information to suggest that these characteristics do not effect price.	Yes
Minimum yield strength	The category of minimum yield strength aligned to the MCC structure. The verification team did not identify any information to suggest that these characteristics do not effect price.	Yes
Tensile Strength	The category of tensile strength aligned to the MCC structure. The verification team did not identify any information to suggest that these characteristics do not effect price.	Yes
Thickness	This category was an optional MCC category and not used by Hyundai Steel.	No
Dimension	The category of dimension aligned to the MCC structure, The verification team did not identify any information to suggest that these characteristics do not effect price.	Yes
Weldability	This category was an optional MCC category and not used by Hyundai Steel.	No

Category	Characteristics of Category & Rationale for Model Matching	Used in Model Matching
Prime	Prime or non-prime. The characteristics of prime aligned to the MCC structure regarding domestic models. The verification team did not identify information to suggest that any of these characteristics do not have an effect on price.	Y
Shape	The characteristics of shape aligned to the MCC structure. The verification team did not identify information to suggest that any of these characteristics do not have an effect on price.	Y
Minimum yield strength	The characteristics of minimum yield strength aligned to the MCC structure. The verification team did not identify information to suggest that any of these characteristics do not have an effect on price.	Ø
Section	As stated in section 2.2, DSC included this additional category to reflect the different groups of combination of height and width of the cross-section of H-section. It has an effect on the cost of production and selling prices.	Y

PUBLIC RECORD

OPTIONS FOR IMPROVEMENT

PUBLIC RECORD

- A. APPOINTMENT OF INDUSTRY SPECIFIC TECHNICAL EXPERTS TO ASSIST COMMISSION STAFF
- 1. Establish advisory panels constituted by industry-specific technical experts available to be engaged on industry and product questions to be resolved selected from university/tertiary institution engineering/materials schools establish a panel of independent industry experts
- 2. Upon initiation of an investigation, engage a member of the panel to advise, as required, on contentious technical, product, standards and market issues raised in the course of investigations, reviews and inquiries.
- 3. Opinions of the technical expert to be published, with rights reserved for interested parties to engage their own expert witnesses to reply.
- 4. Commission decisions and recommendations to be informed by opinions of technical expert

B. ESTABLISH MODEL CONTROL CODE PRACTICE RULES

- 1. Applicants to nominate proposed Model Control Codes (MCC) to be applied in investigation together with application
- 2. Commission to publish MCC proposal in initiation notice/consideration report
- 3. Interested parties may lodge amendments to the Commission's MCC Proposal within seven days of publication
- 4. Commission to refer any amendments to the MCC proposal to the case-appointed industry specific technical expert to resolve and issue approved form of MCCs within a further seven days.
- 5. All responses to questionnaires to comply with the approved MCCs
- 6. Exporters reserve the right to seek extensions to questionnaire response up to fourteen days where amendment of MCCs have reasonably caused delays to compliance

PUBLIC RECORD

THANK YOU

