

Australian Government

Department of Industry, Science and Resources National Measurement Institute

Proficiency Test Final Report AQA 24-18 Nutrients and Anions in Sea and River Water

March 2025

© Commonwealth of Australia 2025.

Unless otherwise noted, the Commonwealth owns the copyright (and any other intellectual property rights, if any) in this publication.

All material in this publication is provided under a Creative Commons Attribution 4.0 International Licence (CC BY 4.0), with the exception of:

- the Commonwealth Coat of Arms;
- the logo of the Department of Industry, Science and Resources;
- photographs of our staff and premises; and
- content supplied by third parties.

Creative Commons Attribution 4.0 International Licence is a standard form licence agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. A summary of the licence terms is available at: creativecommons.org/licenses/by/4.0/. Further details are available on the Creative Commons website, at: creativecommons.org/licenses/by/4.0/legalcode.

You may not copy, distribute, transmit or adapt any material in this publication in any way that suggests that this department or the Commonwealth endorses you or any of your services or products.

Attribution

Material contained in this publication is to be attributed to this department as:

© Commonwealth of Australia, Department of Industry, Science and Resources, Proficiency Test Final Report AQA 24-18 Nutrients and Anions in Sea and River Water, 2025.

Third party copyright

Wherever a third party holds copyright in material contained in this publication, the copyright remains with that party. Their permission may be required to use the material.

This department has made all reasonable efforts to:

- clearly label material where the copyright is owned by a third party;
- ensure that the copyright owner has consented to this material being contained in this publication.

Using the Commonwealth Coat of Arms

The terms of use for the Coat of Arms are available on the Department of Prime Minister and Cabinet's website, at <u>www.pmc.gov.au/resource-centre/government/commonwealth-coat-arms-information-and-guidelines</u>

ACKNOWLEDGMENTS

This study was conducted by the National Measurement Institute (NMI). Support funding was provided by the Australian Government Department of Industry, Science and Resources.

I would like to thank the management and staff of the participating laboratories for supporting the study. It is only through widespread participation that we can provide an effective service to laboratories.

The assistance of the following NMI staff members in the planning, conduct and reporting of the study is acknowledged.

Hamish Lenton Luminita Antin Aaron Mamo Andrew Evans Wei Huang

I would also like to thank the Port Jackson Unit of Marine Rescue NSW who assisted with the collection of sea water for this study.

Raluca Iavetz

Manager, Chemical Proficiency Testing Phone: 61-2-9449 0111 proficiency@measurement.gov.au

Accredited for compliance with ISO/IEC 17043

AQA 24-18 Nutrients and Anions in Sea and River Water

THIS PAGE IS INTENTIONALLY BLANK

TABLE OF CONTENTS

S	UMN	IARY	1
1	IN	NTRODUCTION	2
	1.1	NMI Proficiency Testing Program	2
	1.2	Study Aims	2
	1.3	Study Conduct	2
2	S	TUDY INFORMATION	2
	2.1	Selection of Matrices and Inorganic Analytes	2
	2.2	Participation	2
	2.3	Laboratory Code	3
	2.4	Test Material Specification	3
	2.5	Sample Preparation, Analysis and Homogeneity Testing	3
	2.6	Stability of Analytes	3
	2.7	Sample Storage, Dispatch and Receipt	3
	2.8	Instructions to Participants	3
	2.9	Interim and Preliminary Reports	4
3	Р	ARTICIPANT LABORATORY INFORMATION	5
	3.1	Methodology for S1, S2, S3 and S4	5
	3.2	Additional Information	5
	3.3	Basis of Participants' Measurement Uncertainty Evaluation	5
	3.4	Participant Comments on this PT Study or Suggestions for Future Studies	7
4	Р	RESENTATION OF RESULTS AND STATISTICAL ANALYSIS	8
	4.1	Results Summary	8
	4.2	Outliers and Extreme Outliers	8
	4.3	Assigned Value	8
	4.4	Robust Average and Robust Between-Laboratory Coefficient of Variation	8
	4.5	Target Standard Deviation for Proficiency Assessment	8
	4.6	z-Score	9
	4.7	En-Score	9
	4.8	Traceability and Measurement Uncertainty	9
5	T.	ABLES AND FIGURES	9
6	D	ISCUSSION OF RESULTS	86
	6.1	Assigned Value	86
	6.2	Measurement Uncertainty Reported by Participants	86
	6.3	z-Score	87
	6.4	En-score	87
		Participants' Results and Analytical Methods	96
	6.6	Comparison with Previous NMI Proficiency Tests of Water Characteristics	108
	6.7	Reference Materials and Certified Reference Materials	108
7	R	EFERENCES	111
A		NDIX 1 – SAMPLE PREPARATION, ANALYSIS AND HOMOGENEITY TESTING	113
		nple Preparation	113
		nple Analysis and Homogeneity Testing	113
А	PPE	NDIX 2 - STABILITY STUDY	115

APPENDIX 3 – ASSIGNED VALUE, Z-SCORE AND E _N SCORE CALCULATION	123
APPENDIX 4 - USING PT DATA FOR UNCERTAINTY EVALUATION	124
APPENDIX 5 - ACRONYMS AND ABBREVIATIONS	126
APPENDIX 6 - METHODOLOGY FOR S1	128
APPENDIX 7 - METHODOLOGY FOR S2	134
APPENDIX 8 – METHODOLOGY FOR S3	139
APPENDIX 9 – METHODOLOGY FOR S4	147

SUMMARY

This report presents the results of the proficiency test AQA 24-18 Nutrients and Anions in Sea and River Water. The study focused on the measurement of pH and electrical conductivity at 25°C, alkalinity to pH 4.5 (as CaCO₃), ammonia-N, bromide, chloride, dissolved organic carbon (as dNPOC), fluoride, nitrate-N, nitrite-N, NOx as N (nitrate-N + nitrite-N), orthophosphate-P, silica (as SiO₂), sulphate, total hardness (as CaCO₃), total dissolved nitrogen, total dissolved phosphorus, total Kjeldahl nitrogen, total nitrogen, total organic carbon (as NPOC) and dissolved B, Ca, K, Mg and Na in river water and sea water.

The sample set consisted of two sea water samples and two river water samples.

Twenty-three laboratories registered to participate, and all submitted results.

The assigned values were the robust average of participants' result. The associated uncertainties were estimated from the robust standard deviation of the participants' results.

The outcomes of the study were assessed against the aims as follows, to:

i. compare the performance of participant laboratories and assess their accuracy;

Of 530 z-scores, 486 (92%) returned an acceptable score of $|z| \le 2.0$.

Of 530 E_n scores, 443 (84%) returned an acceptable score of $|E_n| < 1.0$.

Laboratories 5, **18** and **22** reported results for all 37 tests for which a z-score was calculated. **Laboratories 1** (36 out of 36 reported) and **22** (36 out of 37 reported) returned the highest number of acceptable z-scores.

Laboratory 5 had the highest number of acceptable E_n scores with 36 out of 37 reported.

ii. evaluate the laboratories' methods used in determination of inorganic analytes in sea water and river;

Low level nitrite-N in river water was the test that most challenged participants' analytical techniques. Only four laboratories reported results.

Low level silica in sea water also challenged participants' analytical techniques. Most of the unsatisfactory results were produced by laboratories that used an ICP method

iii. compare the performance of participant laboratories with their past performance; Despite differences in matrices and concentrations, on average, participants' performance remained consistent over time.

iv. develop the practical application of measurement uncertainty and provide participants with information that will be useful in assessing their uncertainty evaluation;

Of 534 numerical results, 518 (97%) were reported with an expanded measurement uncertainty. The magnitude of these expanded uncertainties was within the range 0% to 1333% of the reported value. An example of estimating measurement uncertainty using only the proficiency testing data is given in Appendix 4.

v. produce materials that can be used in method validation and as control samples. The study samples were checked for homogeneity and stability during the study conduct and are well characterised, both by in-house testing and from the results of the proficiency round. Surplus test samples from the present study are available for sale.

1 INTRODUCTION

1.1 NMI Proficiency Testing Program

The National Measurement Institute (NMI) is responsible for Australia's national measurement infrastructure, providing a wide range of services, including a chemical proficiency testing program.

Proficiency testing (PT) "is evaluation of participant performance against pre-established criteria by means of inter-laboratory comparison."¹ NMI PT studies target chemical testing in areas of high public significance such as trade, environment, and food safety. NMI offers studies in:

- inorganic analytes in soil, water, food and pharmaceuticals;
- pesticide residues in fruit and vegetables, soil and water;
- petroleum hydrocarbons in soil and water;
- PFAS in water, soil, biota and food;
- chlorophyll a in water; and
- controlled drug assay.

AQA 24-18 is the 19th NMI proficiency study of nutrients, anions and physical tests in water.

1.2 Study Aims

The aims of the study were to:

- compare the performance of participant laboratories and assess their accuracy;
- evaluate the laboratories methods used in determination of nutrients, anions and physical tests in river water and sea water;
- compare the performance of participant laboratories with their past performance
- develop the practical application of measurement uncertainty; and
- produce materials that can be used in method validation and as control samples.

1.3 Study Conduct

The conduct of NMI proficiency tests is described in the NMI Chemical Proficiency Testing Study Protocol.² The statistical methods used are described in the NMI Chemical Proficiency Statistical Manual.³ These documents have been prepared with reference to ISO Standard 17043¹ and The International Harmonized Protocol for Proficiency Testing of (Chemical) Analytical Laboratories.⁴

NMI is accredited by National Association of Testing Authorities, Australia (NATA) to ISO/IEC 17043:2023 as a provider of proficiency testing schemes. This proficiency test is within the scope of NMI's accreditation.

The choice of the test method was left to the participating laboratories.

2 STUDY INFORMATION

2.1 Selection of Matrices and Inorganic Analytes

The 38 tests were selected from those for which an investigation level is published in Australian and New Zealand Guidelines for Fresh and Marine Water Quality⁵ and are commonly measured by water testing laboratories.

2.2 Participation

Twenty-three laboratories participated and all submitted results.

The timetable of the study was:

Invitation issued:	23 September 2024
Samples dispatched:	21 October 2024
Results due:	15 November 2024
Interim report issued	22 November 2024
Preliminary report issued:	26 November 2024

2.3 Laboratory Code

All participant laboratories were assigned a confidential code number.

2.4 Test Material Specification

Four samples were provided for analysis:

Sample S1 was two identical bottles of 200 mL of frozen sea water;

Sample S2 was two identical bottles of 200 mL of chilled sea water;

Sample S3 was two identical bottles of 200 mL of frozen river water;

Sample S4 was 200 mL of frozen river water.

2.5 Sample Preparation, Analysis and Homogeneity Testing

The same validated preparation procedure was followed as in previous studies.² Test samples from previous studies were demonstrated to be sufficiently homogeneous for the evaluation of participants' performance. However, a partial homogeneity test was conducted for all tests, with the exception of alkalinity and silica in S2, and fluoride and nitrite-nitrogen in S3. The results of partial homogeneity testing are reported in this study as the homogeneity value.

The preparation and analysis are described in Appendix 1.

2.6 Stability of Analytes

A stability study was conducted for the less stable analytes (low level Ammonia-N, DOC, Nitrate-N, and Nitrite-N) in S1 and S3 to address issues associated with holding time and holding conditions. The stability study was covered the entire period of the PT study conduct. The set-up of this study together with the results are presented in Appendix 2.

2.7 Sample Storage, Dispatch and Receipt

Samples S1, S3 and S4 were frozen whilst S2 was refrigerated.

The samples were dispatched by courier on 21 October 2024.

A description of the test samples, instructions for participants, and a form for participants to confirm the receipt of the test samples were sent with the samples.

An Excel spreadsheet for the electronic reporting of results was e-mailed to participants.

2.8 Instructions to Participants

Participants were instructed as follows:

- Quantitatively analyse the samples using your normal test method.
- If analyses cannot be commenced on the day of receipt, please store samples S1, S3 and S4 frozen and sample S2 chilled.
- Prior to testing, thaw samples S1, S3 and S4 completely.

Participants are asked to report results in units of mg/L except for pH and EC (μ S/cm).

SAMPLE S1 2 x 200 mL frozen sea water		SAMPLE S3 2 x 200 mL frozen river water	
Test	Estimated Value mg/L	Test	Estimated Value mg/L
Ammonia-N	0.005-0.2	Ammonia-N	0.05-2
Nitrate-N + Nitrite-N	0.005-0.2	Fluoride	0.05-2
Chloride	>10000	Nitrate-N	0.5-20
Fluoride	0.05-2	Nitrite-N	0.05-5
Sulphate	100-4000	Bromide	0.05-5
Dissolved Organic Carbon (as dNPOC)	100-4000	Chloride	5-200
Orthophosphate-P (FRP)	0.005-0.2	Sulphate	5-200
Total Dissolved Nitrogen	0.05-2	Dissolved Organic Carbon (as dNPOC)	0.5-20
Total Dissolved Phosphorus	0.005-0.2	Orthophosphate-P	0.005-0.2
SAMPL 2 x 200 mL chill		Total Dissolved Nitrogen	0.5-20
Test Estimated Value mg/L	Estimated Value mg/L	Total Dissolved Phosphorus	0.005-0.2
B (dissolved)	0.5-20	B (dissolved)	0.5-20
Ca (dissolved)	100-4000	Ca (dissolved)	0.5-50
K (dissolved)	0.5-20	K (dissolved)	0.5-20
Mg (dissolved)	0.5-20	Mg (dissolved)	0.5-20
Na (dissolved)	5-200	Na (dissolved)	5-200
Silica (as SiO2) 0.05-2		SAMPLE S4 200 mL frozen river water	
Alkalinity to pH 4.5 (as CaCO3)	5-200	Test	Estimated Value mg/L
Hardness, total (CaCO3)	1000-40000	Total Kjeldahl Nitrogen	0.05-5
EC (at 25 °C, µS/cm)	2000-80000	Total Nitrogen	0.5-20
pH (at 25 °C)	0.5-20	Total Organic Carbon (as NPOC)	0.5-20

- Report results using the electronic results sheet emailed to you.
- Report results as you would report to a client. For each analyte in each sample, report the expanded measurement uncertainty associated with your analytical result (e.g. 5.23 \pm 0.51 mg/L).
- Please send us the requested details regarding the test method and the basis of your uncertainty estimate.
- Please return the completed results sheet by 15 November 2024.

The results due date was extended to 21 November 2024 due to some labs experiencing instrument difficulties.

2.9 Interim and Preliminary Reports

An interim report was emailed to participants on 22 November 2024. A preliminary report was issued on 26 November 2024. This report included: a summary of the results reported by laboratories, assigned values, performance coefficient of variations, z-scores and En-scores for each analyte tested by participants.

No data has been changed from the Preliminary Report in this Final Report.

3 PARTICIPANT LABORATORY INFORMATION

3.1 Methodology for S1, S2, S3 and S4

Measurement methods and instrumental techniques used for the tests in Samples S1, S2, S3 and S4 are presented in Appendices 6, 7, 8 and 9 respectively.

3.2 Additional Information

Participants had the option to report additional information for each sample analysed. These are transcribed in Table 1.

Lab Code	Additional Information
7	Sample S1: Phosphate sample was diluted with low-nutrient seawater with dilution factor of 2 (1:1), and ammonia sample was diluted with low-nutrient seawater with dilution factor of 5 (1:4).
10	Sample S1: Phosphate sample was diluted with low-nutrient seawater with dilution factor of 2 (1:1), and ammonia sample was diluted with low-nutrient seawater with dilution factor of 5 (1:4).
19	Sample S1 : Phosphate and ammonium sample was diluted with low-nutrient seawater with dilution factor of 5 (1:4).

3.3 Basis of Participants' Measurement Uncertainty Evaluation

Participants were requested to provide information about the basis of their uncertainty evaluation (Table 2).

Lab.	Approach to Estimating MU	Information Sources for MU Estimation ^a		Guide Document for
Code	reproton to Estimating WO	Precision	Method Bias	Estimating MU
1	Top Down - precision and estimates of the method and laboratory bias Coverage factor not reported	Control Samples	Recoveries of SS	
2	Standard deviation of replicate analyses multiplied by 2 or 3 Coverage factor not reported	Control Samples - CRM Duplicate Analysis	CRM Instrument Calibration Recoveries of SS	Eurachem/CITAC Guide
3	Coverage factor not reported	Control Samples - RM Duplicate Analysis Instrument Calibration	CRM Instrument Calibration	
4	Coverage factor not reported			
5	Top Down - precision and estimates of the method and laboratory bias Coverage factor not reported	Control Samples	Recoveries of SS	ISO/GUM
6	Bottom Up (ISO/GUM, fish bone/ cause and effect diagram) Coverage factor not reported	Duplicate Analysis Instrument Calibration	CRM	ISO/GUM
7*	Top Down - precision and estimates of the method and laboratory bias k = 2	Control Samples - CRM	CRM	NMI Uncertainty Course
8	Top Down - precision and estimates of the method and laboratory bias Coverage factor not reported	Control Samples - CRM Duplicate Analysis	CRM	Nordtest Report TR537
9*	Top Down - precision and estimates of the method and laboratory bias k = 2	Control Samples - RM Duplicate Analysis		

Table 2 Basis of Uncertainty Estimate

Approach to Estimating MU	Information Sources	Guide Document for	
Approach to Estimating WO	Precision	Method Bias	Estimating MU
Top Down - precision and estimates of the method and laboratory bias k = 2	Control Samples - CRM	CRM	NMI Uncertainty Course
Professional judgment Coverage factor not reported			
Standard deviation of replicate analyses multiplied by 2 or 3 Coverage factor not reported	Control Samples Duplicate Analysis Instrument Calibration	CRM Recoveries of SS	ISO/GUM
Top Down - precision and estimates of the method and laboratory bias Coverage factor not reported	Control Samples - SS	Recoveries of SS	
Standard deviation of replicate	Standard deviation fr	om PT studies only	
analyses multiplied by 2 or 3 $k = 2$			ISO/GUM
Standard deviation of replicate analyses multiplied by 2 or 3 Coverage factor not reported	Control Samples - RM Duplicate Analysis Instrument Calibration	CRM Instrument Calibration Recoveries of SS	
Bottom Up (ISO/GUM, fish bone/ cause and effect diagram) Coverage factor not reported	Control Samples - CRM Duplicate Analysis Instrument Calibration	CRM Instrument Calibration Laboratory Bias from PT Studies	Eurachem/CITAC Guide
Top Down - precision and estimates of the method and laboratory bias k = 2	Control Samples - CRM Duplicate Analysis Instrument Calibration	CRM Instrument Calibration Recoveries of SS	ISO/GUM
Top Down - precision and estimates of the method and laboratory bias k = 2	Control Samples - CRM Duplicate Analysis	CRM Instrument Calibration Recoveries of SS	Nordtest Report TR537
Top Down - precision and estimates of the method and laboratory bias k = 2	Control Samples - CRM	CRM	NMI Uncertainty Course
Professional judgment Coverage factor not reported	Control Samples - CRM	CRM Recoveries of SS	Inhouse Method
Standard deviation of replicate analyses multiplied by 2 or 3 Coverage factor not reported	Control Samples - SS Duplicate Analysis		
Top Down - precision and estimates of the method and laboratory bias Coverage factor not reported	Duplicate Analysis Instrument Calibration	CRM Recoveries of SS	NMI Uncertainty Course
Top Down - reproducibility (standard	Standard deviation from PT studies only		
deviation) from PT studies used directly k = 2	Instrument Calibration	CRM Instrument Calibration	NATA Technical Report
	of the method and laboratory bias k = 2 Professional judgment Coverage factor not reported Standard deviation of replicate analyses multiplied by 2 or 3 Coverage factor not reported Top Down - precision and estimates of the method and laboratory bias Coverage factor not reported Standard deviation of replicate analyses multiplied by 2 or 3 k = 2 Standard deviation of replicate analyses multiplied by 2 or 3 Coverage factor not reported Bottom Up (ISO/GUM, fish bone/ cause and effect diagram) Coverage factor not reported Top Down - precision and estimates of the method and laboratory bias k = 2 Top Down - precision and estimates of the method and laboratory bias k = 2 Top Down - precision and estimates of the method and laboratory bias k = 2 Top Down - precision and estimates of the method and laboratory bias k = 2 Top Down - precision and estimates of the method and laboratory bias coverage factor not reported Standard deviation of replicate analyses multiplied by 2 or 3 Coverage factor not reported Standard deviation of replicate analyses multiplied by 2 or 3 Coverage factor not reported Top Down - precision and estimates of the method and laboratory bias coverage factor not reported Top Down - precision and estimates of the method and laboratory bias Coverage factor not reported Top Down - precision and estimates of the method and laboratory bias Coverage factor not reported Top Down - precision and estimates of the method and laboratory bias Coverage factor not reported Top Down - precision and estimates of the method and laboratory bias Coverage factor not reported Top Down - precision and estimates of the method and laboratory bias Coverage factor not reported Top Down - reproducibility (standard deviation) from PT studies used directly	Approach to Estimating MUPrecisionTop Down - precision and estimates of the method and laboratory bias $k = 2$ Control Samples - CRMProfessional judgment Coverage factor not reportedControl Samples - CRMStandard deviation of replicate analyses multiplied by 2 or 3 Coverage factor not reportedControl SamplesTop Down - precision and estimates of the method and laboratory bias Coverage factor not reportedControl Samples - SSStandard deviation of replicate analyses multiplied by 2 or 3 $k = 2$ Standard deviation freplicate analyses multiplied by 2 or 3 Coverage factor not reportedStandard deviation of replicate analyses multiplied by 2 or 3 Coverage factor not reportedControl Samples - SM Duplicate Analysis Instrument CalibrationBottom Up (ISO/GUM, fish bone/ cause and effect diagram) Coverage factor not reportedControl Samples - CRM Duplicate Analysis Instrument CalibrationTop Down - precision and estimates of the method and laboratory bias k = 2Control Samples - CRM Duplicate Analysis Instrument CalibrationTop Down - precision and estimates of the method and laboratory bias k = 2Control Samples - CRM Duplicate AnalysisTop Down - precision and estimates of the method and laboratory bias k = 2Control Samples - CRM Duplicate AnalysisTop Down - precision and estimates of the method and laboratory bias k = 2Control Samples - CRM Duplicate AnalysisTop Down - precision and estimates of the method and laboratory bias k = 2Control Samples - CRM Duplicate AnalysisTop Down - precision and estimates of the method and laborat	Image: constraint of the method and laboratory bias k = 2 Control Samples - CRM CRM Professional judgment Coverage factor not reported Control Samples - CRM CRM Standard deviation of replicate analyses multiplied by 2 or 3 of the method and laboratory bias Coverage factor not reported Control Samples Duplicate Analysis Instrument Calibration CRM Recoveries of SS Top Down - precision and estimates of the method and laboratory bias Coverage factor not reported Control Samples - SS Recoveries of SS Standard deviation of replicate analyses multiplied by 2 or 3 k = 2 Control Samples - RM Duplicate Analysis Instrument Calibration Recoveries of SS Standard deviation of replicate analyses multiplied by 2 or 3 k = 2 Control Samples - CRM Duplicate Analysis Instrument Calibration Instrument Calibration Recoveries of SS Bottom Up (ISO/GUM, fish bone/ cause and effect diagram) Coverage factor not reported Control Samples - CRM Duplicate Analysis Instrument Calibration Instrument Calibration Recoveries of SS Top Down - precision and estimates of the method and laboratory bias k = 2 Control Samples - CRM Duplicate Analysis Instrument Calibration Recoveries of SS Top Down - precision and estimates of the method and laboratory bias coverage factor not reported Control Samples - CRM Duplicate Analysis Instrument Calibration Recoveries of SS Top Down - precision and estimates of the method and laboratory bias coverage factor not reported Control Samples - CRM Duplicate Analysis CRM Recoveries of SS

^a RM = Reference Material, CRM = Certified Reference Material, SS = Spiked Samples. *Additional Information in Table 3

Table 3 Additional Information for Basis of Uncertainty Estimate

Lab Code	Additional Information
/	Measurement uncertainty is reported as an expanded uncertainty with a coverage factor of 2 (95% confidence interval)
9	UoM is based on ISO 17025 Specific Criteria and EURACHEM/CITAC Guide
10	Measurement uncertainty is reported as an expanded uncertainty with a coverage factor of 2 (95% confidence interval)

19	Measurement uncertainty is reported as an expanded uncertainty with a coverage factor of 2
17	(95% confidence interval)

3.4 Participant Comments on this PT Study or Suggestions for Future Studies

The study co-ordinator welcomes comments or suggestions from participants about this study or possible future studies. Such feedback may be useful in improving future studies. Participants' comments are reproduced in Table 4.

Lab Code	Participants' Comments	Study Co-ordinator's Response
 S1, S2, S3 – Analysis require sharing of single bottle across two different sections; DOC/TOC we usually require separate container for analysis (limited volume) 		Sample S1 was <i>two identical</i> bottles of 200 mL of frozen sea water; Sample S2 was <i>two identical</i> bottles of 200 mL of chilled sea water; Sample S3 was <i>two identical</i> bottles of 200 mL of frozen river water; Sample S4 was <i>one bottle</i> of 200 mL of frozen river water. DOC was included in S2 while TOC was included in S4.
		To assist with future studies' design we invite participant laboratories to provide information on recommended sample size and any other requirements.
7, 10 and 19	We normally report our results as molecules in micromol/L. For this PT, we have converted our micromol/L results into mg/L by using MW of the element and we are reporting the element in mg/L.	Thank you for your feedback. We have to design our studies based on the most popular methods used by laboratories and on the report, format used by the majority.
7, 10 and 19	The samples for ammonium and phosphate are very high in concentration compared to our conditional analysis range. For this PT, phosphate and ammonium sample was diluted with low- nutrient seawater with dilution factor of dilution factor of 5 (1:4). It would be preferable if phosphate and ammonia samples are available in low range for the future PT to avoid the necessity of dilution.	Thank you for your feedback. We will include samples at a lower level in our next studies. The other participants are invited to comment.

Table 4 Participants' Comments

4 PRESENTATION OF RESULTS AND STATISTICAL ANALYSIS

4.1 Results Summary

Participant results are listed in Tables 5 to 41 with results' summary statistics: robust average, median, maximum, minimum, robust standard deviation (SD_{rob}) and robust coefficient of variation (CV_{rob}) . Bar charts of results and performance scores are presented in Figures 2 to 39. An example chart with an interpretation guide is shown in Figure 1.

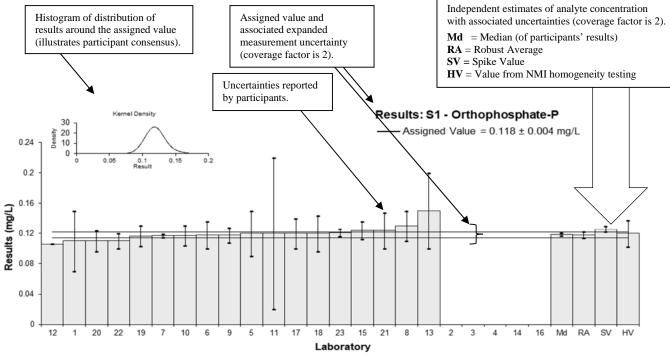


Figure 1 Guide to Presentation of Results

4.2 Outliers and Extreme Outliers

Outliers were results less than 50% and greater than 150% of the robust average and were removed before assigned value calculation. Extreme outliers were obvious blunders, such as those with incorrect units, decimal errors, or results from a different proficiency test item (gross errors) and were removed from calculation of summary statistics.^{3,4,6}

4.3 Assigned Value

An example of the assigned value calculation using data from the present study is given in Appendix 3. The assigned value is defined as: 'the value attributed to a particular property of a proficiency test item.'¹ In this study, the property is the mass fraction of analyte. Assigned values were the robust average of participants' results, outliers removed; the expanded uncertainties were estimated from the associated robust standard deviations.^{4,6}

4.4 Robust Average and Robust Between-Laboratory Coefficient of Variation

The robust averages and associated expanded measurement uncertainties were calculated using the procedure described in 'Statistical methods for use in proficiency testing by interlaboratory comparisons, ISO13528'. The robust between-laboratory coefficient of variation (robust CV) is a measure of the variability of participants' results and was calculated using the procedure described in ISO13528.⁶

4.5 Target Standard Deviation for Proficiency Assessment

The target standard deviation for proficiency assessment (σ) is the product of the assigned value (*X*) and the performance coefficient of variation (PCV). This value is used for calculation of participant z-score and provides scaling for laboratory deviation from the assigned value.

 $\sigma = (X) * PCV$ Equation 1

It is important to note that the PCV is a fixed value and is not the standard deviation of participants' results. The fixed value set for PCV is based on the existing regulation, the acceptance criteria indicated by the methods, the matrix, the concentration level of analyte and on experience from previous studies. It is backed up by mathematical models such as Thompson Horwitz equation.⁷

4.6 z-Score

An example of z-score calculation using data from the present study is given in Appendix 3. For each participants' result a z-score is calculated according to Equation 2 below:

$$z = \frac{(\chi - X)}{\sigma}$$
 Equation 2

where:

z is z-score;

- χ is participants' result;
- X is the study assigned value;
- σ is the target standard deviation.

A z-score with absolute value (|z|):

- $|z| \le 2.0$ is acceptable;
- 2.0 < |z| < 3.0 is questionable;
- $|z| \ge 3.0$ is unacceptable.

4.7 En-Score

An example of E_n -score calculation using data from the present study is given in Appendix 3. The E_n -score is complementary to the z-score in assessment of laboratory performance. E_n -score includes measurement uncertainty and is calculated according to Equation 3 below:

$$E_n = \frac{(\chi - X)}{\sqrt{U_{\chi}^2 + U_X^2}} \qquad \text{Equation 3}$$

where:

 E_n is E_n-score;

 χ is a participants' result;

X is the assigned value;

 U_{χ} is the expanded uncertainty of the participants' result;

 U_X is the expanded uncertainty of the assigned value.

An E_n -score with absolute value ($|E_n|$):

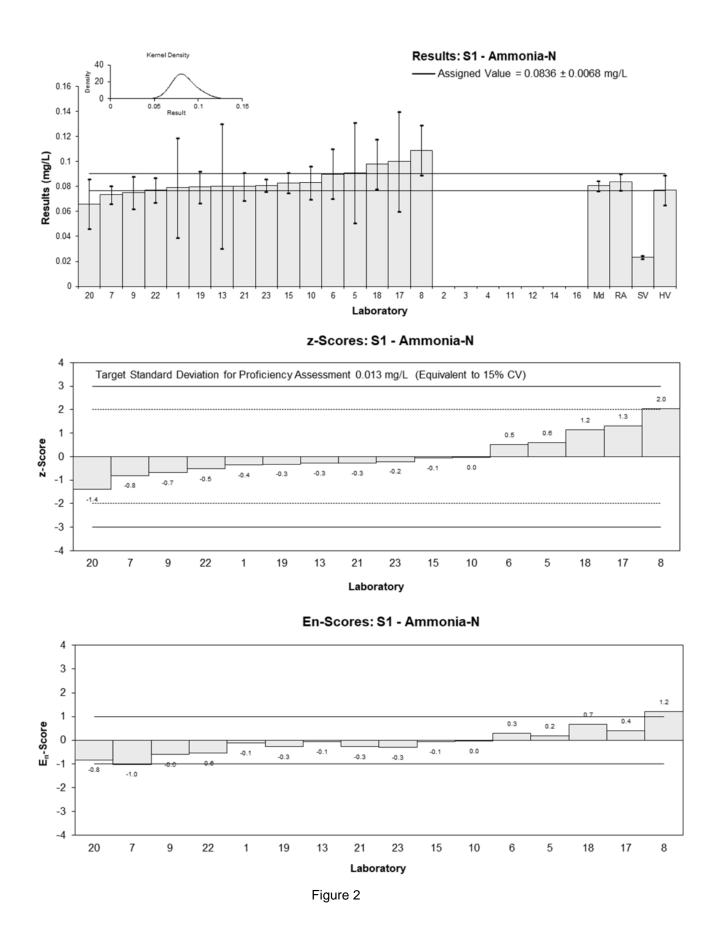
- $|E_n| < 1.0$ is acceptable;
- $|E_n| \ge 1.0$ is unacceptable.

4.8 Traceability and Measurement Uncertainty

Laboratories accredited to ISO/IEC Standard 17025:2018⁸ must establish and demonstrate the traceability and measurement uncertainty associated with their test results. Guidelines for quantifying uncertainty in analytical measurement are described in the Eurachem/CITAC Guide.⁹

5 TABLES AND FIGURES

Sample No.	S1
Matrix	Sea Water
Analyte	Ammonia-N
Unit	mg/L


Participant Results

Lab. Code	Result	Uncertainty	z	En
1	0.079	0.04	-0.37	-0.11
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	0.091	0.04	0.59	0.18
6	0.09	0.02	0.51	0.30
7	0.0734	0.0073	-0.81	-1.02
8	0.109	0.02	2.03	1.20
9	0.075	0.013	-0.69	-0.59
10	0.0831	0.0135	-0.04	-0.03
11	NR	NR		
12	NR	NR		
13	0.08	0.05	-0.29	-0.07
14	NT	NT		
15	0.083	0.008	-0.05	-0.06
16	<0.2	1.12		
17	0.1	0.04	1.31	0.40
18	0.098	0.02	1.15	0.68
19	0.0796	0.0129	-0.32	-0.27
20	0.066	0.02	-1.40	-0.83
21	0.0800	0.0112	-0.29	-0.27
22	0.077	0.010	-0.53	-0.55
23	0.081	0.005	-0.21	-0.31

Statistics

Assigned Value	0.0836	0.0068
Spike Value*	0.0233	0.0012
Homogeneity Value	0.077	0.012
Robust Average	0.0836	0.0068
Median	0.0805	0.0042
Mean	0.0841	
Ν	16	
Мах	0.109	
Min	0.066	
Robust SD	0.011	
Robust CV	13%	

*Incurred value not included

Sample No.	S1
Matrix	Sea Water
Analyte	Chloride
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	22000	6000	0.19	0.07
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	22000	4000	0.19	0.10
6	21400	1540	-0.09	-0.12
7	NT	NT		
8	22659	2270	0.49	0.46
9	27900	1700	2.92	3.56
10	NT	NT		
11	21400	4280	-0.09	-0.05
12	21592	432	0.00	-0.01
13	22000	4000	0.19	0.10
14	NT	NT		
15	19500	2300	-0.97	-0.89
16	21108	2110	-0.23	-0.23
17	21000	2100	-0.28	-0.28
18	20000	3000	-0.74	-0.53
19	NT	NT		
20	22000	2750	0.19	0.14
21	22400	2700	0.37	0.29
22	21400	1500	-0.09	-0.13
23	NR	NR		

Assigned Value	21600	500
Spike Value	Not Spiked	
Homogeneity Value	20000	3000
Robust Average	21600	500
Median	21600	400
Mean	21900	
Ν	15	
Мах	27900	
Min	19500	
Robust SD	850	
Robust CV	3.9%	

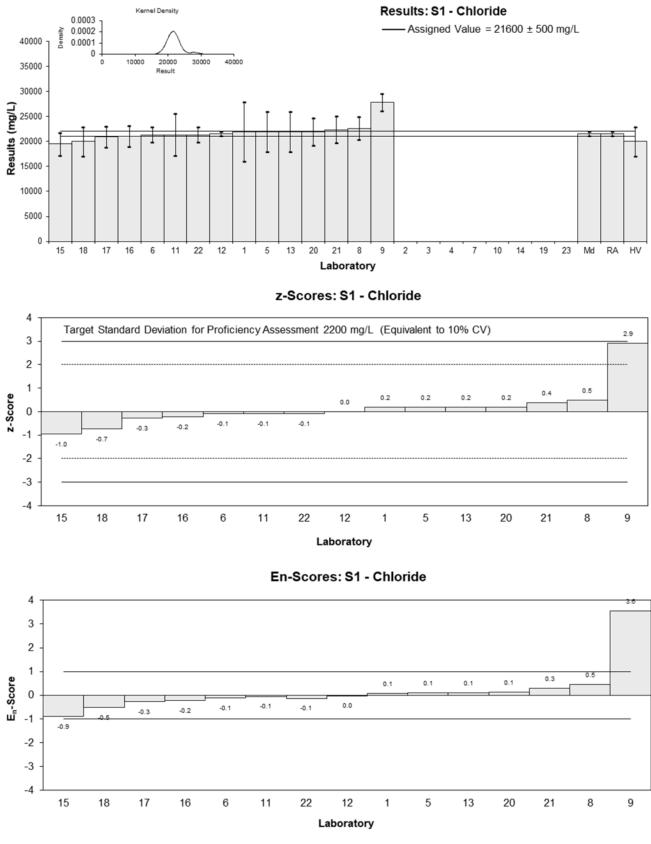


Figure 3

Sample No.	S1
Matrix	Sea Water
Analyte	DOC
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	1	1	-0.71	-0.12
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	1.0	1	-0.71	-0.12
6	NR	NR		
7	NT	NT		
8*	0.274	0.03	-5.04	-7.42
9	1.19	0.27	0.42	0.24
10	NT	NT		
11	NR	NR		
12	1.23	0.025	0.65	0.98
13	1	1	-0.71	-0.12
14	NT	NT		
15*	0.4	0.3	-4.29	-2.25
16	NT	NT		
17	1.2	0.2	0.48	0.35
18*	1.9	0.38	4.64	1.97
19	NT	NT		
20*	2.3	0.58	7.02	2.00
21	1.23	0.25	0.65	0.40
22	1.1	1	-0.12	-0.02
23	NR	NR		

* Outlier, see Section 4.2

Assigned Value	1.12	0.11
Spike Value	Not Spiked	
Homogeneity Value	1.35	0.20
Robust Average	1.12	0.39
Median	1.15	0.16
Mean	1.15	
Ν	12	
Мах	2.3	
Min	0.274	
Robust SD	0.54	
Robust CV	48%	

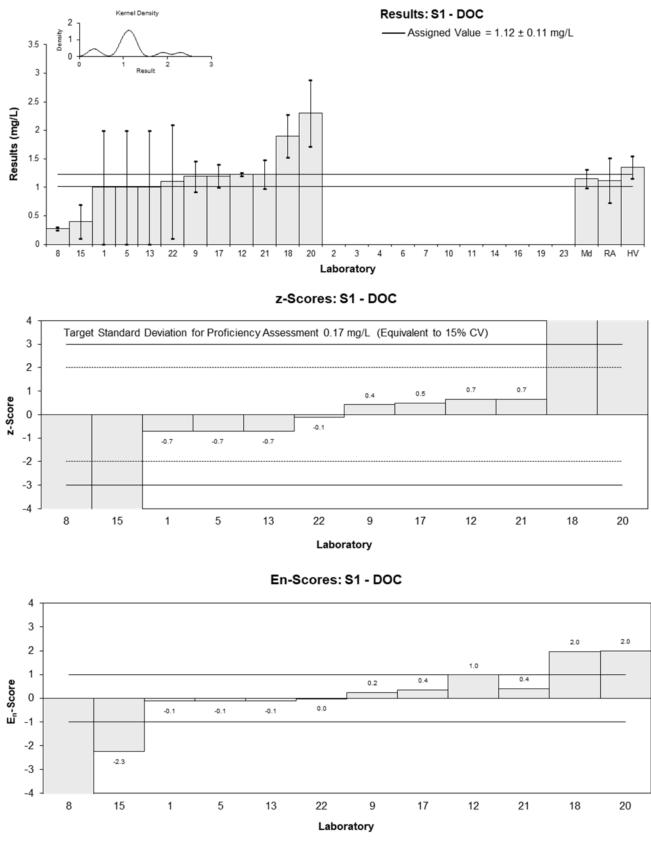
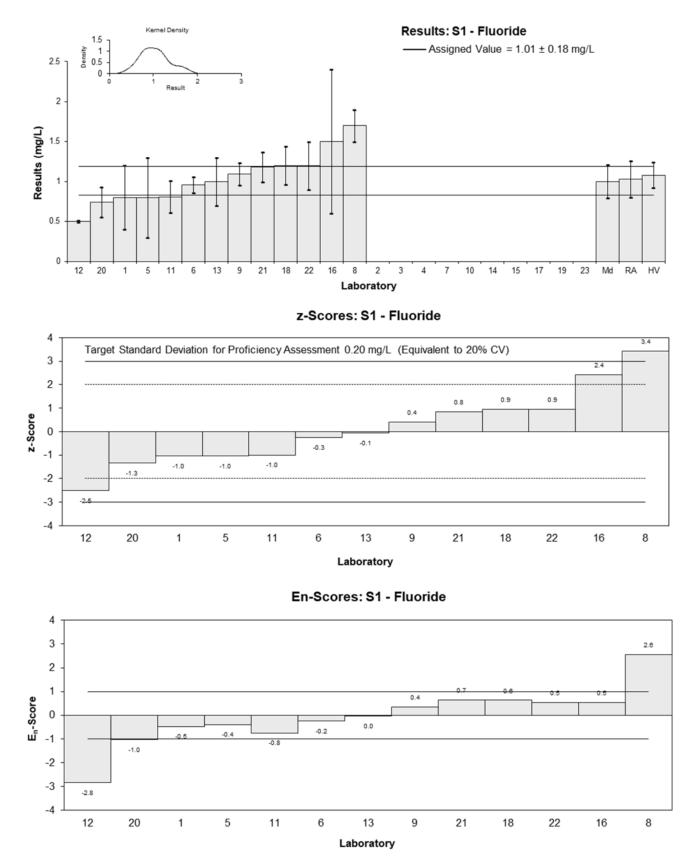


Figure 4


Sample No.	S1
Matrix	Sea Water
Analyte	Fluoride
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	0.8	0.4	-1.04	-0.48
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	0.8	0.5	-1.04	-0.40
6	0.96	0.10	-0.25	-0.24
7	NT	NT		
8*	1.7	0.2	3.42	2.56
9	1.09	0.14	0.40	0.35
10	NT	NT		
11	0.808	0.2	-1.00	-0.75
12*	0.50	0.01	-2.52	-2.83
13	1	0.3	-0.05	-0.03
14	NT	NT		
15	<10	NR		
16	1.5	0.9	2.43	0.53
17	<10	NR		
18	1.2	0.24	0.94	0.63
19	NT	NT		
20	0.74	0.19	-1.34	-1.03
21	1.18	0.19	0.84	0.65
22	1.2	0.3	0.94	0.54
23	NR	NR		

* Outlier, see Section 4.2

Assigned Value	1.01	0.18
Spike Value	Not Spiked	
Homogeneity Value	1.08	0.16
Robust Average	1.03	0.23
Median	1.00	0.21
Mean	1.04	
Ν	13	
Мах	1.7	
Min	0.5	
Robust SD	0.34	
Robust CV	33%	

Sample No.	S1
Matrix	Sea Water
Analyte	Nitrate-N +Nitrite-N
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	0.065	0.03	0.44	0.13
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	0.060	0.02	-0.11	-0.05
6	0.06	0.02	-0.11	-0.05
7	0.0587	0.0009	-0.25	-0.84
8	0.069	0.01	0.87	0.77
9	0.0597	0.0080	-0.14	-0.15
10	0.0624	0.0025	0.15	0.39
11*	0.301	0.1	26.23	2.40
12	0.057	0.002	-0.44	-1.22
13	0.057	0.05	-0.44	-0.08
14	NT	NT		
15	0.058	0.006	-0.33	-0.46
16	NT	NT		
17	0.062	0.012	0.11	0.08
18	0.056	0.011	-0.55	-0.44
19	0.0597	0.0023	-0.14	-0.37
20	0.063	0.015	0.22	0.13
21	0.0666	0.0133	0.61	0.41
22	0.058	0.010	-0.33	-0.29
23	0.070	0.007	0.98	1.21

* Outlier, see Section 4.2

Statistics

Assigned Value	0.0610	0.0026
Spike Value*	0.0224	0.0011
Homogeneity Value	0.0648	0.0097
Robust Average	0.0617	0.0029
Median	0.0600	0.0024
Mean	0.075	
N	18	
Мах	0.301	
Min	0.056	
Robust SD	0.0050	
Robust CV	8.1%	

*Incurred value not included

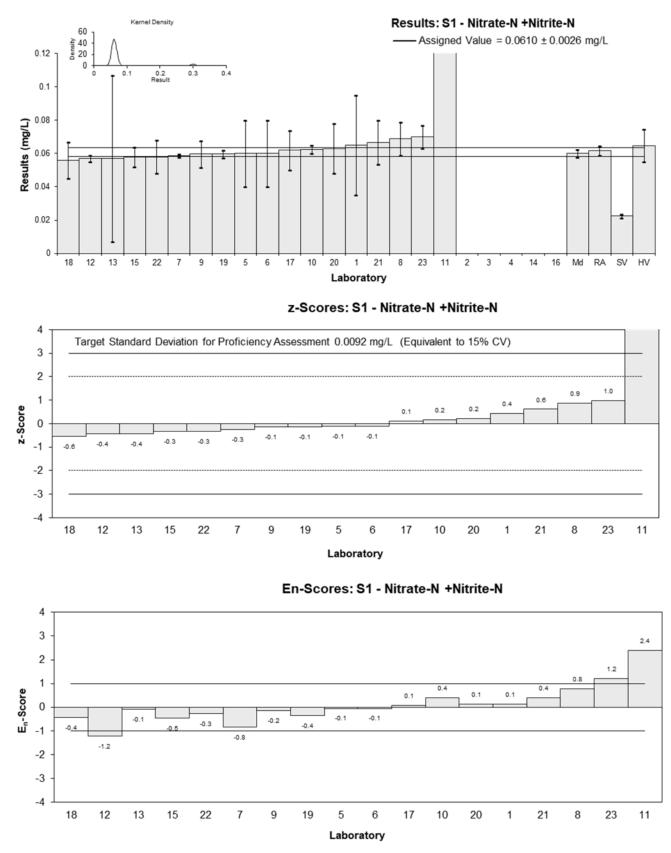


Figure 6

Table 10

Sample Details

Sample No.	S1
Matrix	Sea Water
Analyte	Orthophosphate-P
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	0.11	0.04	-0.45	-0.20
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	0.12	0.03	0.11	0.07
6	0.118	0.018	0.00	0.00
7	0.1171	0.0022	-0.05	-0.20
8	0.130	0.02	0.68	0.59
9	0.118	0.010	0.00	0.00
10	0.1173	0.0138	-0.04	-0.05
11	0.120	0.1	0.11	0.02
12	0.106	0.00	-0.68	-3.00
13	0.15	0.05	1.81	0.64
14	NT	NT		
15	0.124	0.012	0.34	0.47
16	NT	NT		
17	0.12	0.02	0.11	0.10
18	0.12	0.024	0.11	0.08
19	0.1168	0.0137	-0.07	-0.08
20	0.11	0.014	-0.45	-0.55
21	0.124	0.024	0.34	0.25
22	0.11	0.01	-0.45	-0.74
23	0.121	0.005	0.17	0.47

Assigned Value	0.118	0.004
Spike Value	0.126	0.004
Homogeneity Value	0.120	0.018
Robust Average	0.118	0.004
Median	0.119	0.002
Mean	0.120	
N	18	
Мах	0.15	
Min	0.106	
Robust SD	0.0068	
Robust CV	5.7%	

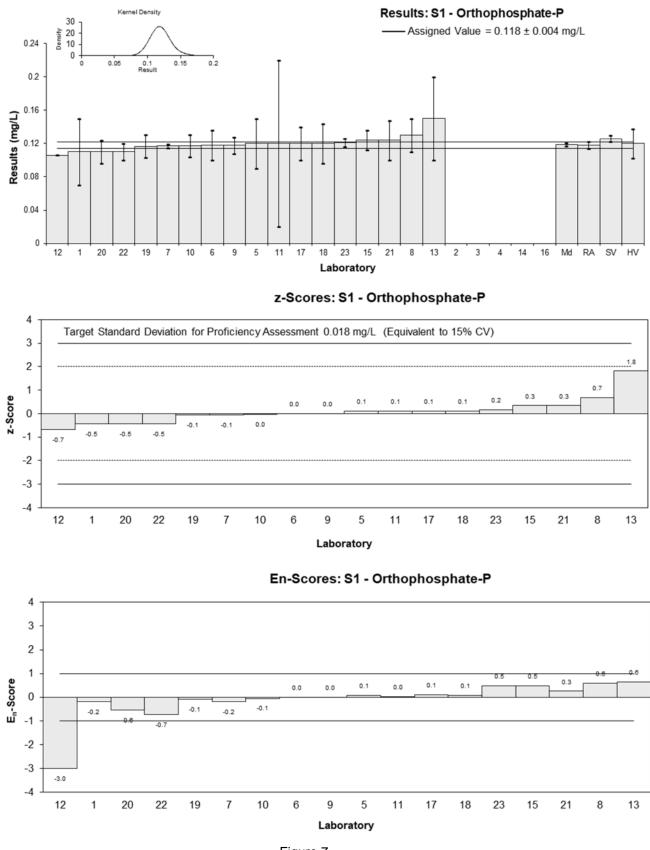


Figure 7

Sample No.	S1
Matrix	Sea Water
Analyte	Sulphate
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	2800	800	-0.41	-0.15
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	2900	600	-0.07	-0.03
6	3039	170	0.41	0.48
7	NT	NT		
8	3185	320	0.91	0.72
9	3750	230	2.84	2.84
10	NT	NT		
11	4020	800	3.77	1.34
12	2831	57	-0.30	-0.47
13	2900	600	-0.07	-0.03
14	NT	NT		
15	2760	400	-0.55	-0.36
16	3002	300	0.28	0.23
17	2400	240	-1.78	-1.73
18	2500	375	-1.44	-1.01
19	NT	NT		
20	2900	360	-0.07	-0.05
21	2880	490	-0.14	-0.08
22	2910	350	-0.03	-0.03
23	NR	NR		

Assigned Value	2920	180
Spike Value	Not Spiked	
Homogeneity Value	2580	390
Robust Average	2920	180
Median	2900	100
Mean	2990	
Ν	15	
Мах	4020	
Min	2400	
Robust SD	270	
Robust CV	9.4%	

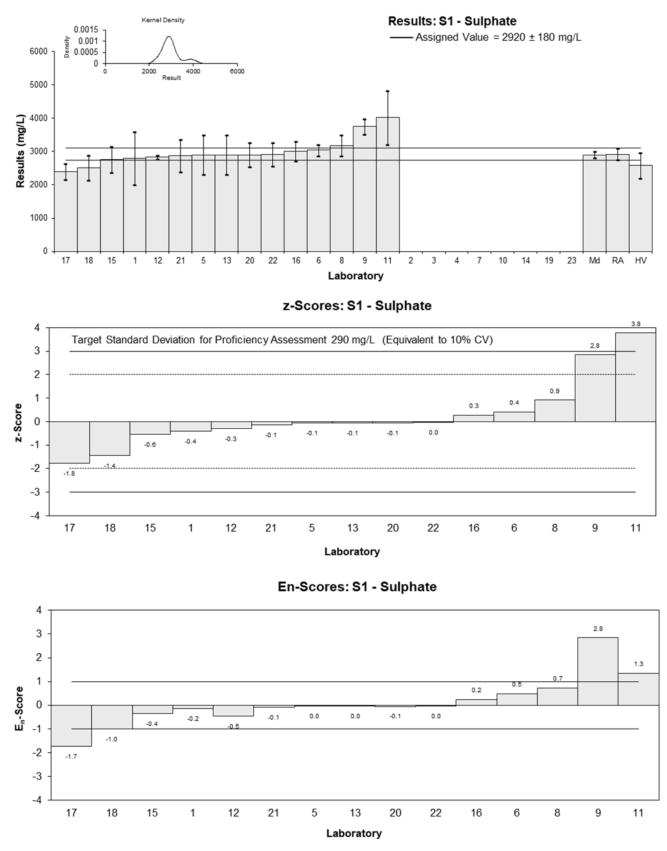


Figure 8

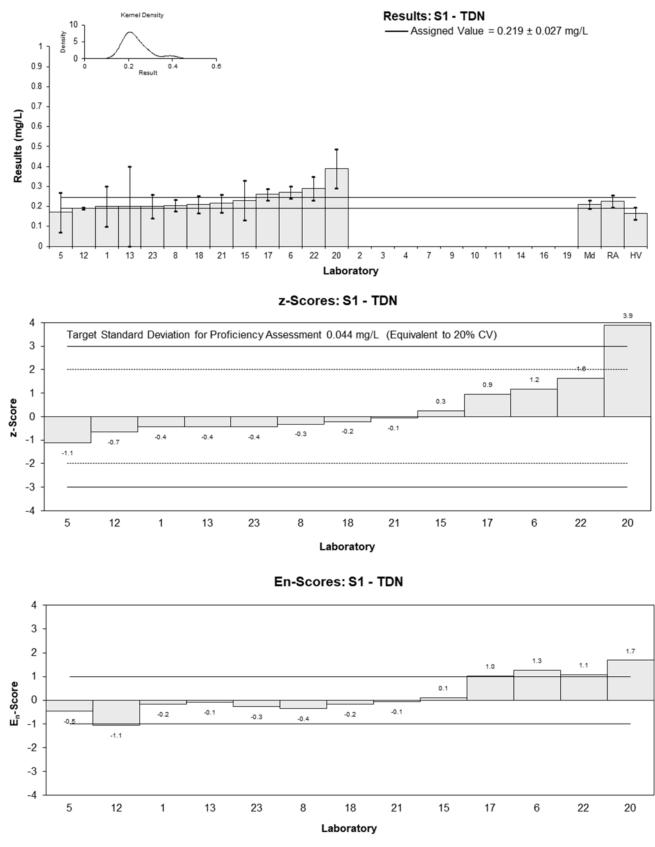
Sample No.	S1
Matrix	Sea Water
Analyte	TDN
Unit	mg/L

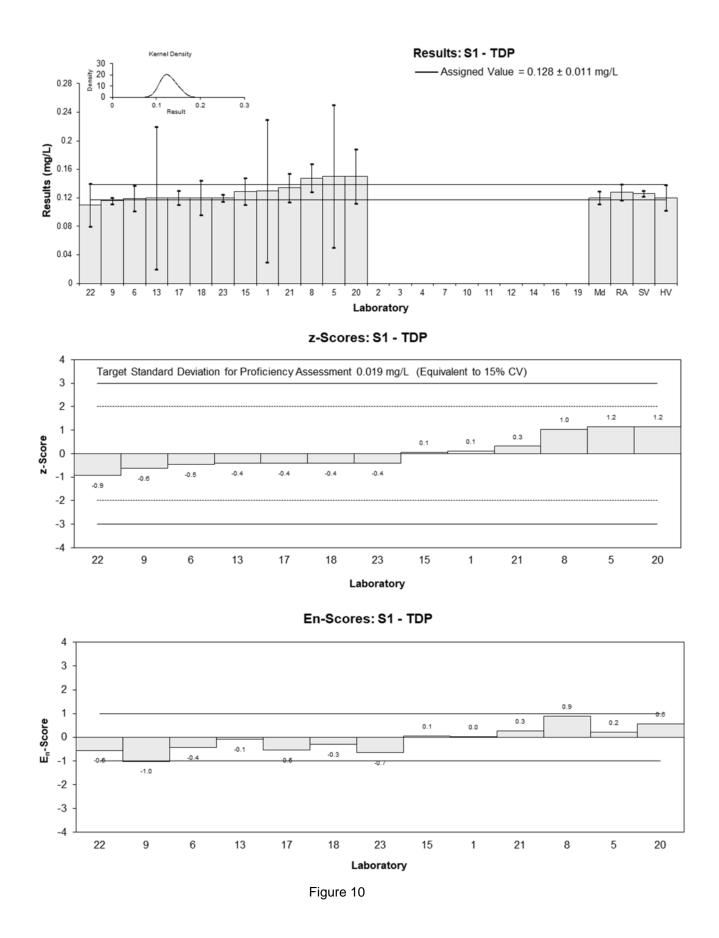
Participant Results

Lab. Code	Result	Uncertainty	z	En
1	0.2	0.1	-0.43	-0.18
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	0.17	0.1	-1.12	-0.47
6	0.27	0.03	1.16	1.26
7	NT	NT		
8	0.205	0.03	-0.32	-0.35
9	<0.3	0.064		
10	NT	NT		
11	NR	NR		
12	0.190	0.004	-0.66	-1.06
13	0.2	0.2	-0.43	-0.09
14	NT	NT		
15	0.23	0.1	0.25	0.11
16	NT	NT		
17	0.26	0.03	0.94	1.02
18	0.21	0.042	-0.21	-0.18
19	NT	NT		
20*	0.39	0.098	3.90	1.68
21	0.216	0.045	-0.07	-0.06
22	0.29	0.06	1.62	1.08
23	0.2	0.06	-0.43	-0.29

* Outlier, see Section 4.2

Assigned Value	0.219	0.027
Spike Value	Not Spiked	
Homogeneity Value	0.165	0.025
Robust Average	0.226	0.031
Median	0.210	0.021
Mean	0.233	
Ν	13	
Мах	0.39	
Min	0.17	
Robust SD	0.045	
Robust CV	20%	



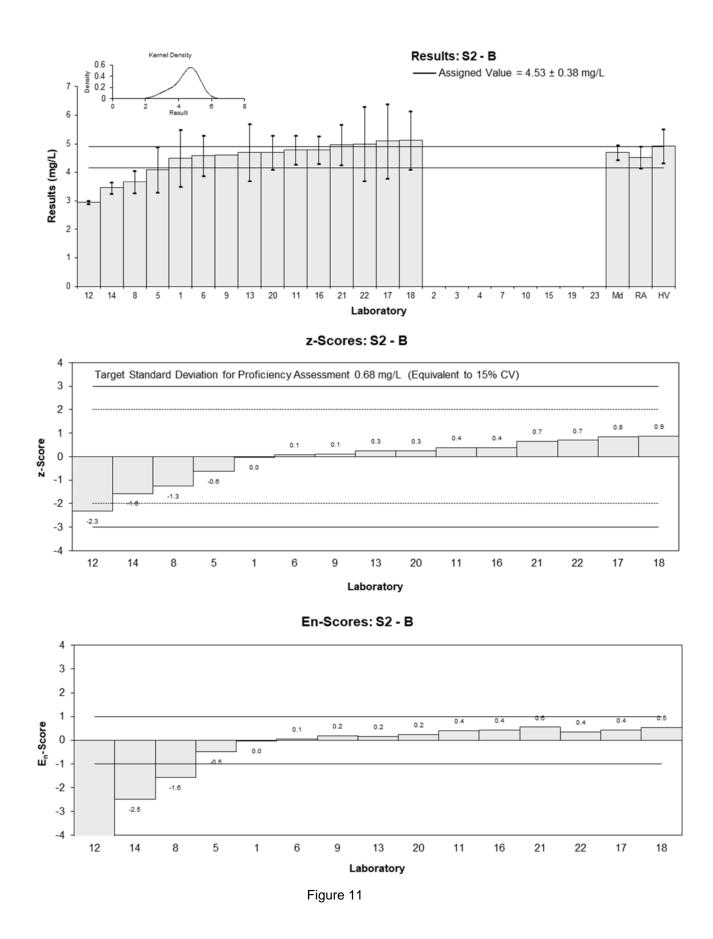

Figure 9

Sample No.	S1
Matrix	Sea Water
Analyte	TDP
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	0.13	0.1	0.10	0.02
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	0.15	0.1	1.15	0.22
6	0.119	0.018	-0.47	-0.43
7	NT	NT		
8	0.148	0.02	1.04	0.88
9	0.1159	0.0043	-0.63	-1.02
10	NT	NT		
11	NR	NR		
12	NR	NR		
13	0.12	0.1	-0.42	-0.08
14	NT	NT		
15	0.129	0.019	0.05	0.05
16	NT	NT		
17	0.12	0.01	-0.42	-0.54
18	0.12	0.024	-0.42	-0.30
19	NT	NT		
20	0.15	0.038	1.15	0.56
21	0.134	0.020	0.31	0.26
22	0.11	0.03	-0.94	-0.56
23	0.12	0.005	-0.42	-0.66

Assigned Value	0.128	0.011
Spike Value	0.126	0.004
Homogeneity Value	0.120	0.018
Robust Average	0.128	0.011
Median	0.120	0.009
Mean	0.128	
Ν	13	
Мах	0.15	
Min	0.11	
Robust SD	0.015	
Robust CV	12%	

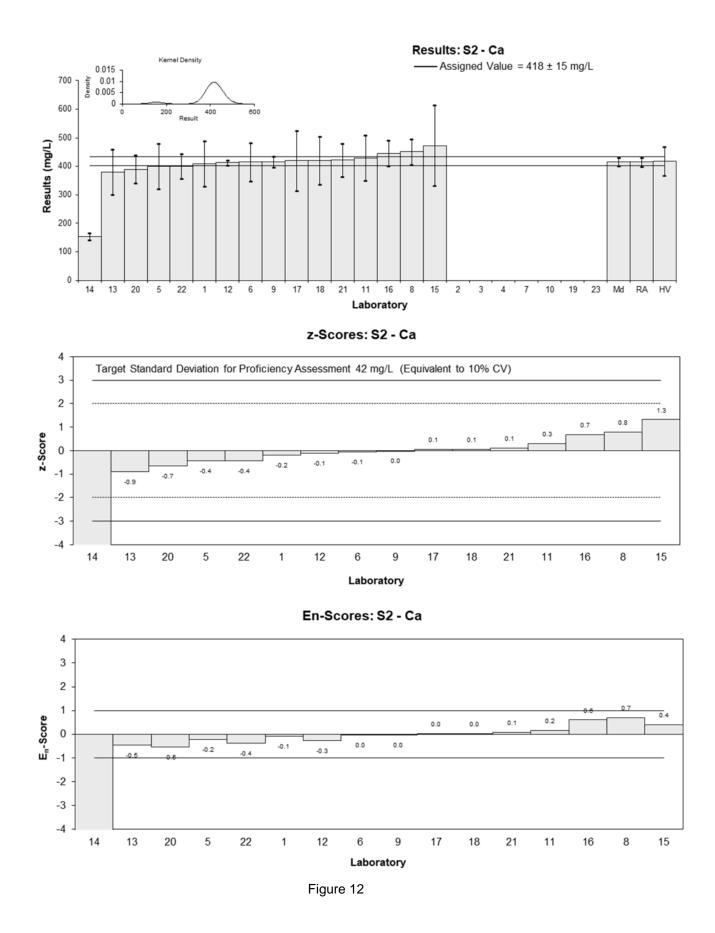


Sample No.	S2
Matrix	Sea Water
Analyte	В
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	4.5	1	-0.04	-0.03
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	4.1	0.8	-0.63	-0.49
6	4.58	0.71	0.07	0.06
7	NT	NT		
8	3.67	0.4	-1.27	-1.56
9	4.6	NR	0.10	0.18
10	NT	NT		
11	4.79	0.5	0.38	0.41
12	2.95	0.06	-2.33	-4.11
13	4.7	1	0.25	0.16
14	3.46	0.2	-1.57	-2.49
15	NT	NT		
16	4.79	0.479	0.38	0.43
17	5.1	1.3	0.84	0.42
18	5.12	1.02	0.87	0.54
19	NT	NT		
20	4.7	0.59	0.25	0.24
21	4.97	0.70	0.65	0.55
22	5.0	1.3	0.69	0.35
23	NR	NR		

Assigned Value	4.53	0.38
Spike Value	Not Spiked	
Homogeneity Value	4.92	0.59
Robust Average	4.53	0.38
Median	4.70	0.26
Mean	4.47	
Ν	15	
Мах	5.12	
Min	2.95	
Robust SD	0.59	
Robust CV	13%	


Sample No.	S2
Matrix	Sea Water
Analyte	Са
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	Z	En
1	410	80	-0.19	-0.10
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	400	80	-0.43	-0.22
6	415	68	-0.07	-0.04
7	NT	NT		
8	451	45	0.79	0.70
9	417	19	-0.02	-0.04
10	NT	NT		
11	430	80	0.29	0.15
12	413	8.3	-0.12	-0.29
13	380	80	-0.91	-0.47
14*	154.07	11.98	-6.31	-13.75
15	473	142	1.32	0.39
16	446	44.6	0.67	0.60
17	420	105	0.05	0.02
18	420	84	0.05	0.02
19	NT	NT		
20	390	50	-0.67	-0.54
21	422	59	0.10	0.07
22	400	44	-0.43	-0.39
23	NR	NR		

* Outlier, see Section 4.2

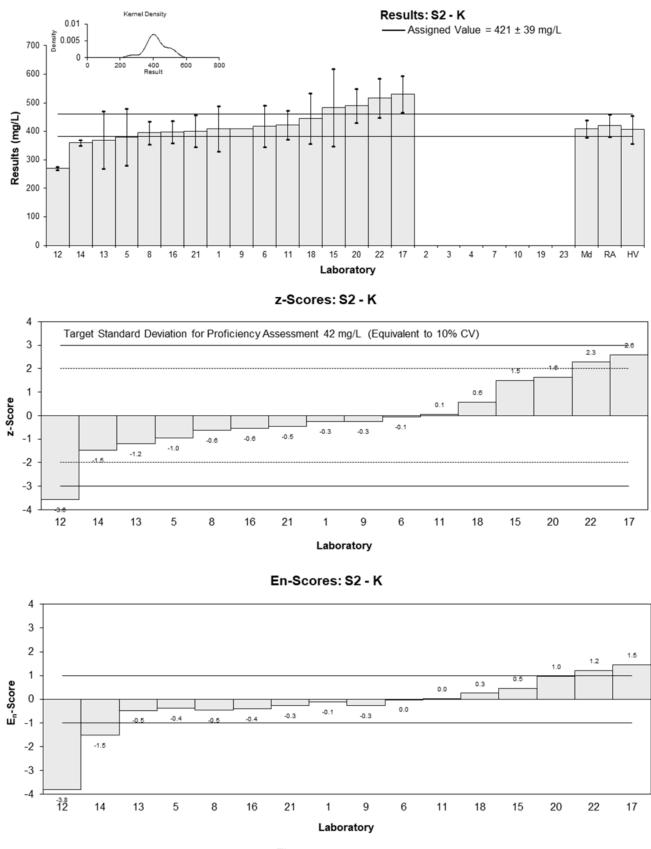
	440	
Assigned Value	418	15
Spike Value	Not Spiked	
Homogeneity Value	418	50
Robust Average	415	16
Median	416	14
Mean	403	
Ν	16	
Мах	473	
Min	154.07	
Robust SD	26	
Robust CV	6.3%	

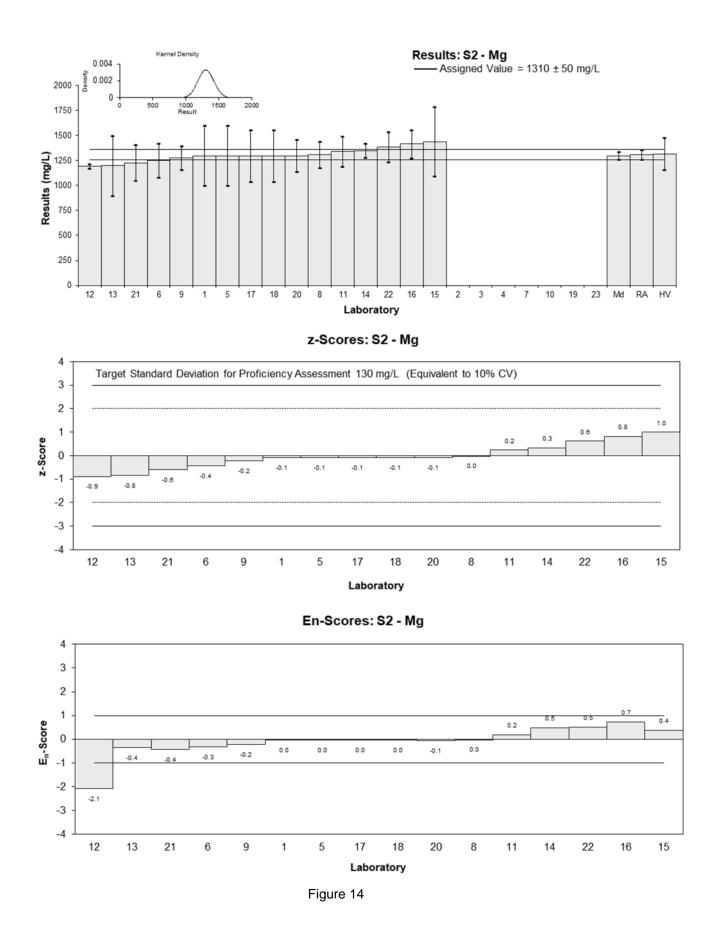
Sample No.	S2
Matrix	Sea Water
Analyte	К
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	410	80	-0.26	-0.12
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	380	100	-0.97	-0.38
6	419	73	-0.05	-0.02
7	NT	NT		
8	395	40	-0.62	-0.47
9	410	NR	-0.26	-0.28
10	NT	NT		
11	423	50	0.05	0.03
12	271	5.42	-3.56	-3.81
13	370	100	-1.21	-0.48
14	359.21	10.30	-1.47	-1.53
15	484	136	1.50	0.45
16	398	39.8	-0.55	-0.41
17	530	64	2.59	1.45
18	445	89	0.57	0.25
19	NT	NT		
20	490	60	1.64	0.96
21	401	56	-0.48	-0.29
22	517	69	2.28	1.21
23	NR	NR		

Assigned Value	421	39
Spike Value	Not Spiked	
Homogeneity Value	406	49
Robust Average	421	39
Median	410	30
Mean	419	
Ν	16	
Мах	530	
Min	271	
Robust SD	63	
Robust CV	15%	



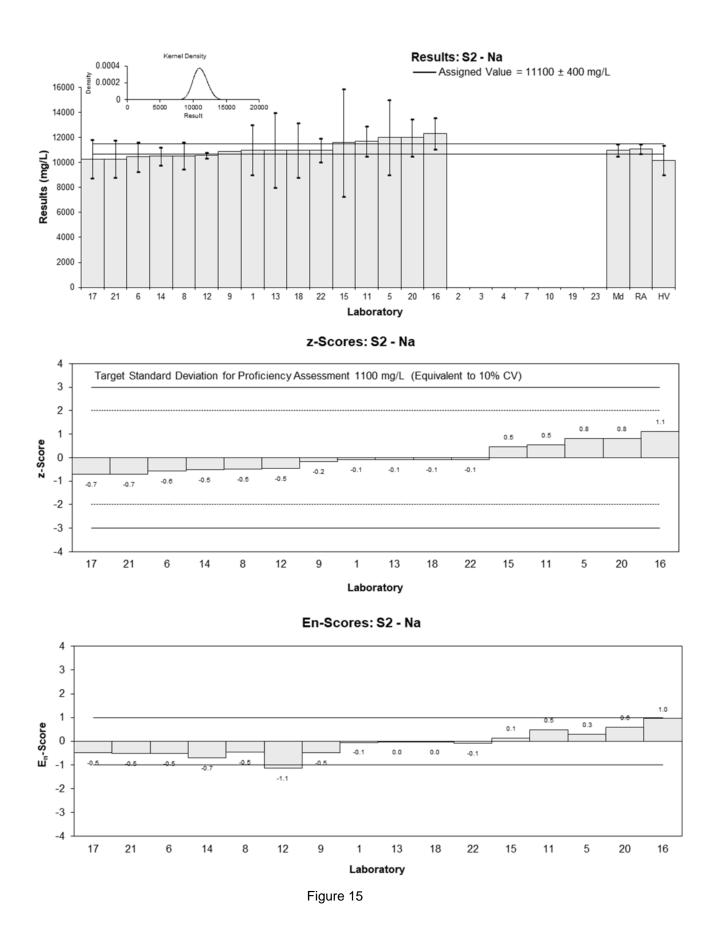

Figure 13

Sample No.	S2
Matrix	Sea Water
Analyte	Mg
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	1300	300	-0.08	-0.03
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	1300	300	-0.08	-0.03
6	1252	170	-0.44	-0.33
7	NT	NT		
8	1309	130	-0.01	-0.01
9	1280	120	-0.23	-0.23
10	NT	NT		
11	1340	150	0.23	0.19
12	1194	24	-0.89	-2.09
13	1200	300	-0.84	-0.36
14	1351.68	72.80	0.32	0.47
15	1440	346	0.99	0.37
16	1418	141.8	0.82	0.72
17	1300	260	-0.08	-0.04
18	1300	260	-0.08	-0.04
19	NT	NT		
20	1300	160	-0.08	-0.06
21	1230	180	-0.61	-0.43
22	1390	150	0.61	0.51
23	NR	NR		

Assigned Value	1310	50
Spike Value	Not Spiked	
Homogeneity Value	1320	160
Robust Average	1310	50
Median	1300	40
Mean	1310	
N	16	
Max	1440	
Min	1194	
Robust SD	77	
Robust CV	5.9%	

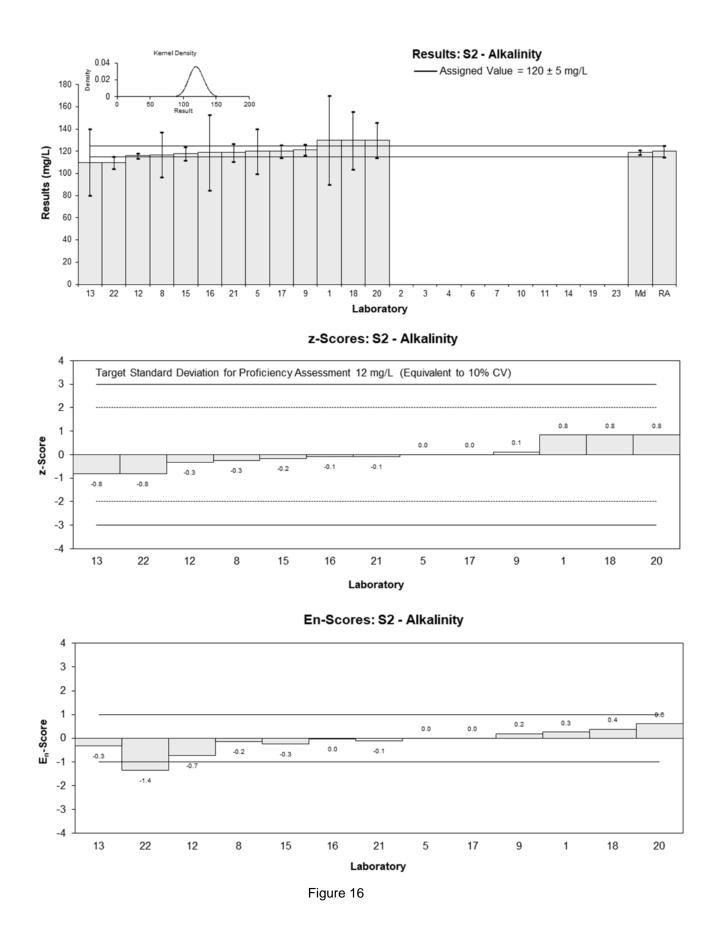


Sample No.	S2
Matrix	Sea Water
Analyte	Na
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	11000	2000	-0.09	-0.05
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	12000	3000	0.81	0.30
6	10460	1170	-0.58	-0.52
7	NT	NT		
8	10559	1100	-0.49	-0.46
9	10900	NR	-0.18	-0.50
10	NT	NT		
11	11700	1200	0.54	0.47
12	10590	212	-0.46	-1.13
13	11000	3000	-0.09	-0.03
14	10511.29	734.44	-0.53	-0.70
15	11600	4300	0.45	0.12
16	12330	1233	1.11	0.95
17	10300	1545	-0.72	-0.50
18	11000	2200	-0.09	-0.04
19	NT	NT		
20	12000	1500	0.81	0.58
21	10300	1500	-0.72	-0.52
22	11000	950	-0.09	-0.10
23	NR	NR		

Assigned Value	11100	400
Spike Value	Not Spiked	
Homogeneity Value	10200	1200
Robust Average	11100	400
Median	11000	500
Mean	11100	
N	16	
Мах	12330	
Min	10300	
Robust SD	710	
Robust CV	6.5%	

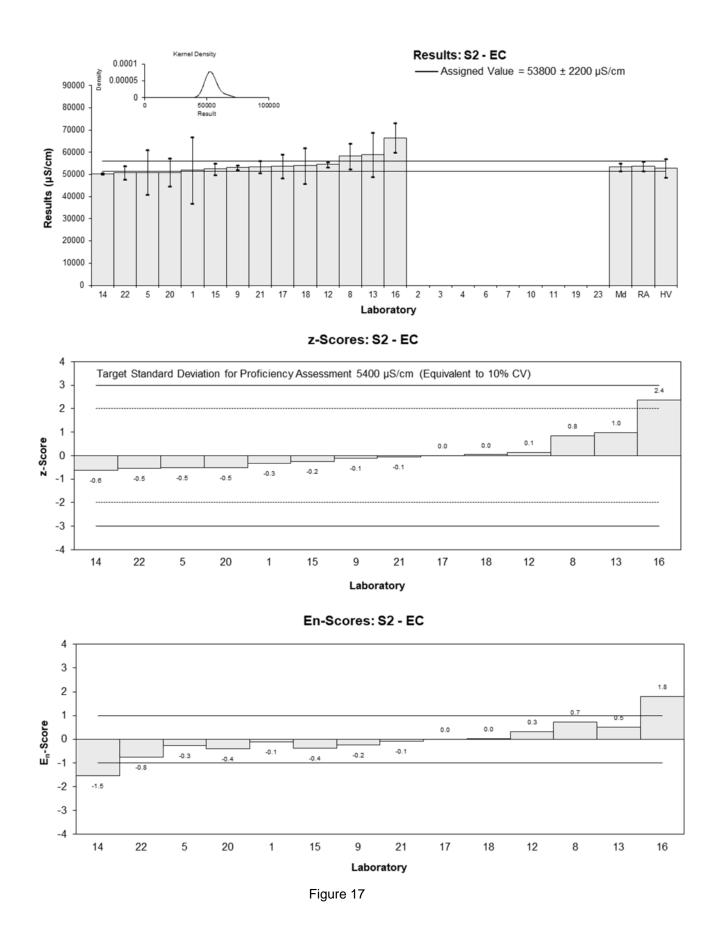


Sample No.	S2
Matrix	Sea Water
Analyte	Alkalinity
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	130	40	0.83	0.25
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	120	20	0.00	0.00
6	NR	NR		
7	NT	NT		
8	117	20	-0.25	-0.15
9	121.3	4.9	0.11	0.19
10	NT	NT		
11	NR	NR		
12	116	2.3	-0.33	-0.73
13	110	30	-0.83	-0.33
14	NT	NT		
15	118	6	-0.17	-0.26
16	119	34	-0.08	-0.03
17	120	6	0.00	0.00
18	130	26	0.83	0.38
19	NT	NT		
20	130	16	0.83	0.60
21	119	8	-0.08	-0.11
22	110	5.5	-0.83	-1.35
23	NR	NR		

Assigned Value	120	5
Spike Value	Not Spiked	
Robust Average	120	5
Median	119	2
Mean	120	
Ν	13	
Мах	130	
Min	110	
Robust SD	7.6	
Robust CV	6.3%	

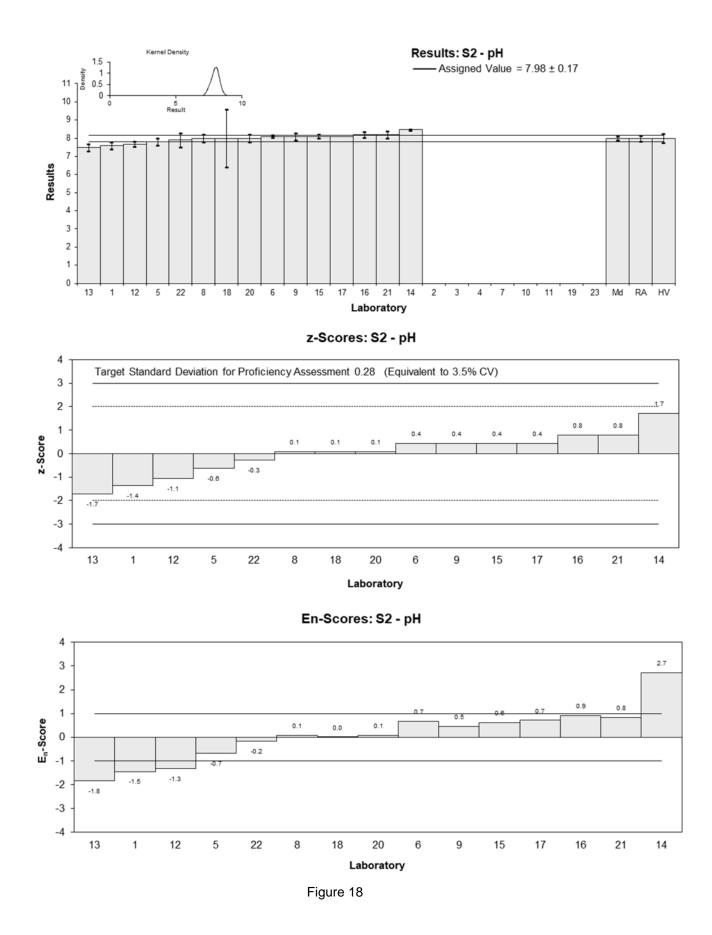


Sample No.	S2
Matrix	Sea Water
Analyte	EC
Unit	µS/cm

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	52000	15000	-0.33	-0.12
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	51000	10000	-0.52	-0.27
6	NR	NR		
7	NT	NT		
8	58300	5830	0.84	0.72
9	53200	1100	-0.11	-0.24
10	NT	NT		
11	NR	NR		
12	54560	1092	0.14	0.31
13	59000	10000	0.97	0.51
14	50400	250.5	-0.63	-1.54
15	52500	2600	-0.24	-0.38
16	66500	6650	2.36	1.81
17	53800	5380	0.00	0.00
18	54000	8100	0.04	0.02
19	NT	NT		
20	51000	6400	-0.52	-0.41
21	53500	2700	-0.06	-0.09
22	50900	3100	-0.54	-0.76
23	NR	NR		

Assigned Value	53800	2200
Spike Value	Not Spiked	
Homogeneity Value	53000	4200
Robust Average	53800	2200
Median	53400	1800
Mean	54300	
Ν	14	
Мах	66500	
Min	50400	
Robust SD	3300	
Robust CV	6.1%	


AQA 24-18 Nutrients and Anions in Sea and River Water

Sample No.	S2
Matrix	Sea Water
Analyte	рН

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	7.6	0.2	-1.36	-1.45
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	7.8	0.2	-0.64	-0.69
6	8.10	0.06	0.43	0.67
7	NT	NT		
8	8.00	0.2	0.07	0.08
9	8.1	0.2	0.43	0.46
10	NT	NT		
11	NR	NR		
12	7.68	0.15	-1.07	-1.32
13	7.5	0.2	-1.72	-1.83
14	8.46	0.05	1.72	2.71
15	8.1	0.1	0.43	0.61
16	8.2	0.17	0.79	0.92
17	8.1	NR	0.43	0.71
18	8.0	1.6	0.07	0.01
19	NT	NT		
20	8.0	0.2	0.07	0.08
21	8.2	0.2	0.79	0.84
22	7.9	0.4	-0.29	-0.18
23	NR	NR		

Assigned Value	7.98	0.17
Spike Value	Not Spiked	
Homogeneity Value	8.00	0.24
Robust Average	7.98	0.17
Median	8.00	0.10
Mean	7.98	
Ν	15	
Max	8.46	
Min	7.5	
Robust SD	0.26	
Robust CV	3.2%	

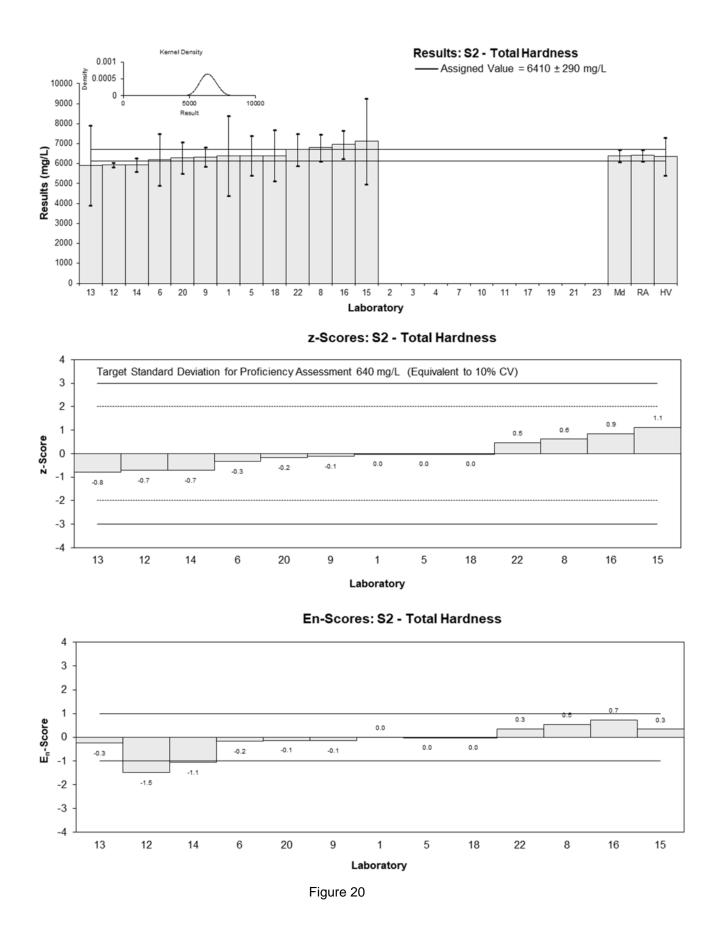
Sample No.	S2
Matrix	Sea Water
Analyte	Silica (as SiO2)
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	0.06	0.05	-1.63	-0.56
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	0.1	0.02	0.62	0.45
6*	0.64	0.11	30.96	4.97
7	0.0781	0.0012	-0.61	-0.78
8**	13.0	2.0	725.34	6.46
9	<1.0	0.064		
10	0.0901	0.0042	0.06	0.08
11	NR	NR		
12*	0.296	0.006	11.63	13.59
13	0.1	0.1	0.62	0.11
14**	1.40	0.11	73.65	11.82
15	0.1	0.1	0.62	0.11
16	NT	NT		
17	<0.1	NR		
18*	0.321	0.064	13.03	3.54
19	0.0931	0.0044	0.23	0.28
20	0.065	0.1	-1.35	-0.24
21	NT	NT		
22	0.090	0.008	0.06	0.06
23	0.107	NR	1.01	1.29

* Outlier, ** Extreme Outlier, see Section 4.2

Assigned Value	0.089	0.014
Spike Value	Not Spiked	
Robust Average	0.116	0.043
Median	0.100	0.010
Mean	0.165	
Ν	13	
Max	0.64	
Min	0.06	
Robust SD	0.062	
Robust CV	54%	

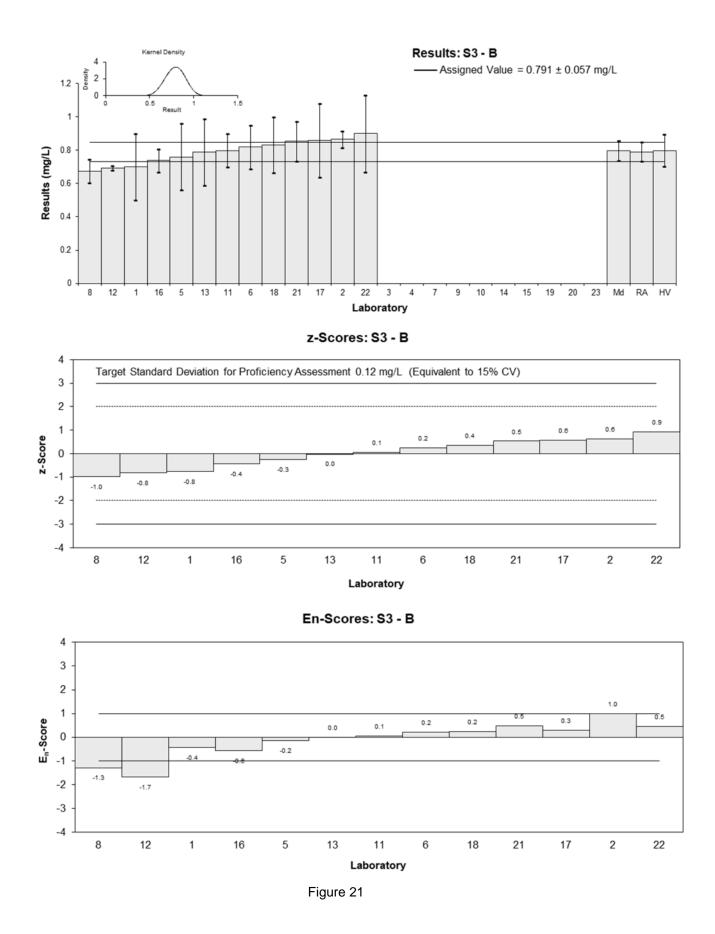

Figure 19

Sample No.	S2
Matrix	Sea Water
Analyte	Total Hardness
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	6400	2000	-0.02	0.00
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	6400	1000	-0.02	-0.01
6	6200	1310	-0.33	-0.16
7	NT	NT		
8	6800	680	0.61	0.53
9	6330	480	-0.12	-0.14
10	NT	NT		
11	NR	NR		
12	5947	119	-0.72	-1.48
13	5900	2000	-0.80	-0.25
14	5951	329.70	-0.72	-1.05
15	7120	2140	1.11	0.33
16	6955	695	0.85	0.72
17	NT	NT		
18	6402	1280	-0.01	-0.01
19	NT	NT		
20	6300	790	-0.17	-0.13
21	NT	NT		
22	6700	810	0.45	0.34
23	NR	NR		

Assigned Value	6410	290
Spike Value	Not Spiked	
Homogeneity Value	6360	950
Robust Average	6410	290
Median	6400	310
Mean	6420	
Ν	13	
Мах	7120	
Min	5900	
Robust SD	430	
Robust CV	6.6%	

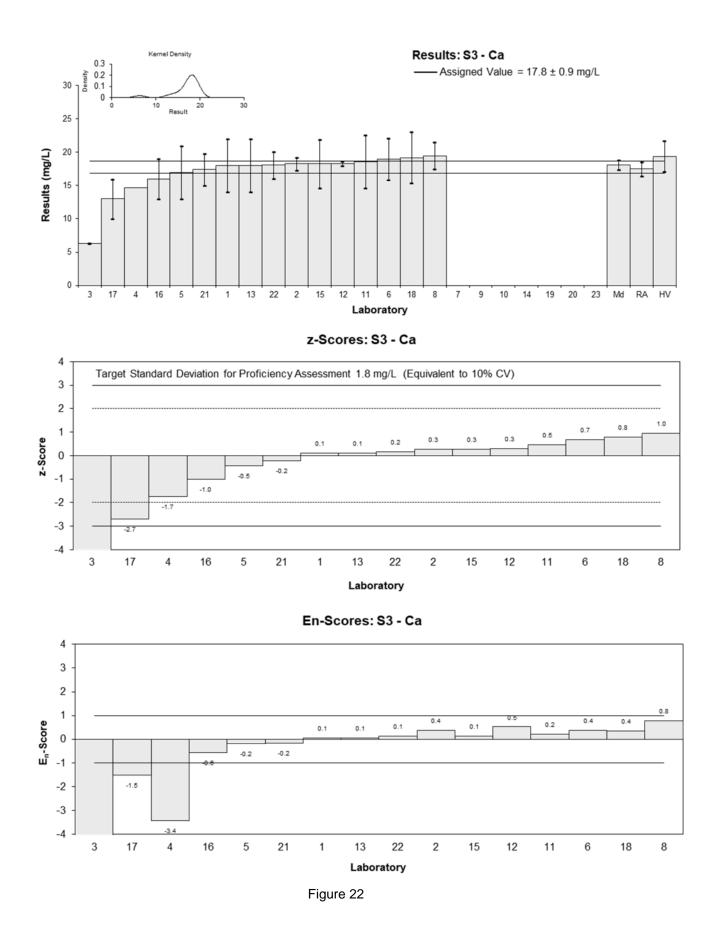


Sample No.	S3
Matrix	River Water
Analyte	В
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	0.7	0.2	-0.77	-0.44
2	0.866	0.05	0.63	0.99
3	NT	NT		
4	NR	NR		
5	0.76	0.2	-0.26	-0.15
6	0.82	0.13	0.24	0.20
7	NT	NT		
8	0.675	0.07	-0.98	-1.29
9	NT	NT		
10	NT	NT		
11	0.798	0.1	0.06	0.06
12	0.693	0.014	-0.83	-1.67
13	0.79	0.2	-0.01	0.00
14	NT	NT		
15	NR	NR		
16	0.739	0.07	-0.44	-0.58
17	0.86	0.22	0.58	0.30
18	0.832	0.166	0.35	0.23
19	NT	NT		
20	NT	NT		
21	0.854	0.120	0.53	0.47
22	0.90	0.23	0.92	0.46
23	NR	NR		

Assigned Value	0.791	0.057
Spike Value	Not Spiked	
Homogeneity Value	0.799	0.096
Robust Average	0.791	0.057
Median	0.798	0.061
Mean	0.791	
Ν	13	
Мах	0.9	
Min	0.675	
Robust SD	0.083	
Robust CV	10%	

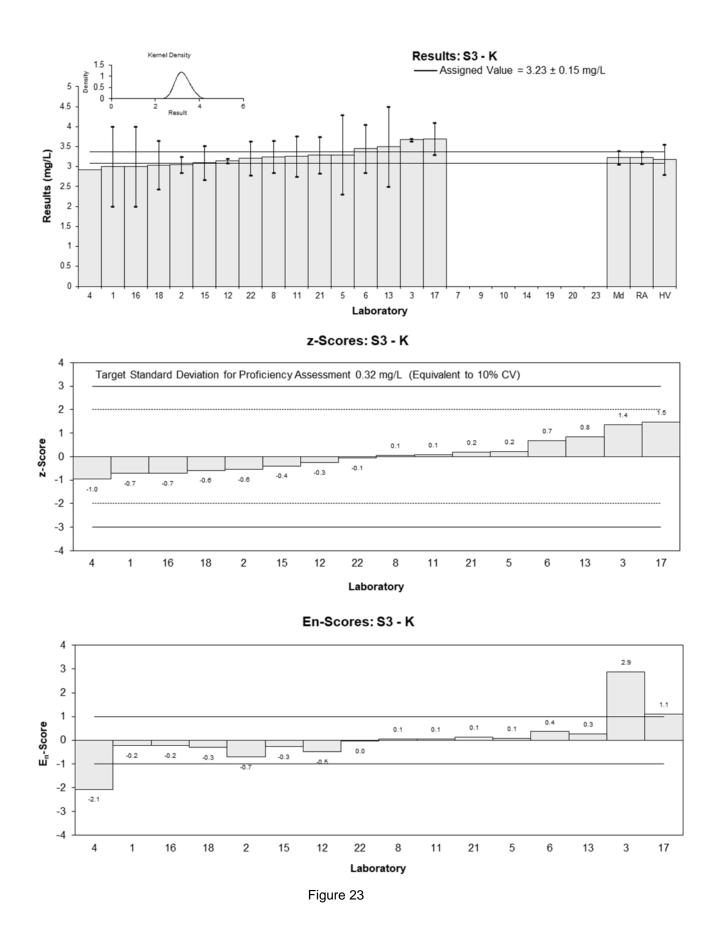

Sample No.	S3
Matrix	River Water
Analyte	Са
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	18	4	0.11	0.05
2	18.3	0.95	0.28	0.38
3*	6.28	0.04	-6.47	-12.79
4	14.7	NR	-1.74	-3.44
5	17	4	-0.45	-0.20
6	19.0	3.1	0.67	0.37
7	NT	NT		
8	19.5	2.0	0.96	0.78
9	NT	NT		
10	NT	NT		
11	18.6	4	0.45	0.20
12	18.31	0.37	0.29	0.52
13	18	4	0.11	0.05
14	NT	NT		
15	18.3	3.66	0.28	0.13
16	16	3	-1.01	-0.57
17	13	3	-2.70	-1.53
18	19.2	3.84	0.79	0.35
19	NT	NT		
20	NT	NT		
21	17.4	2.4	-0.22	-0.16
22	18.1	2.0	0.17	0.14
23	NR	NR		

* Outlier, see Section 4.2

Assigned Value	17.8	0.9
Spike Value	Not Spiked	
Homogeneity Value	19.4	2.3
Robust Average	17.5	1.1
Median	18.1	0.7
Mean	16.9	
Ν	16	
Мах	19.5	
Min	6.28	
Robust SD	1.8	
Robust CV	10.0%	

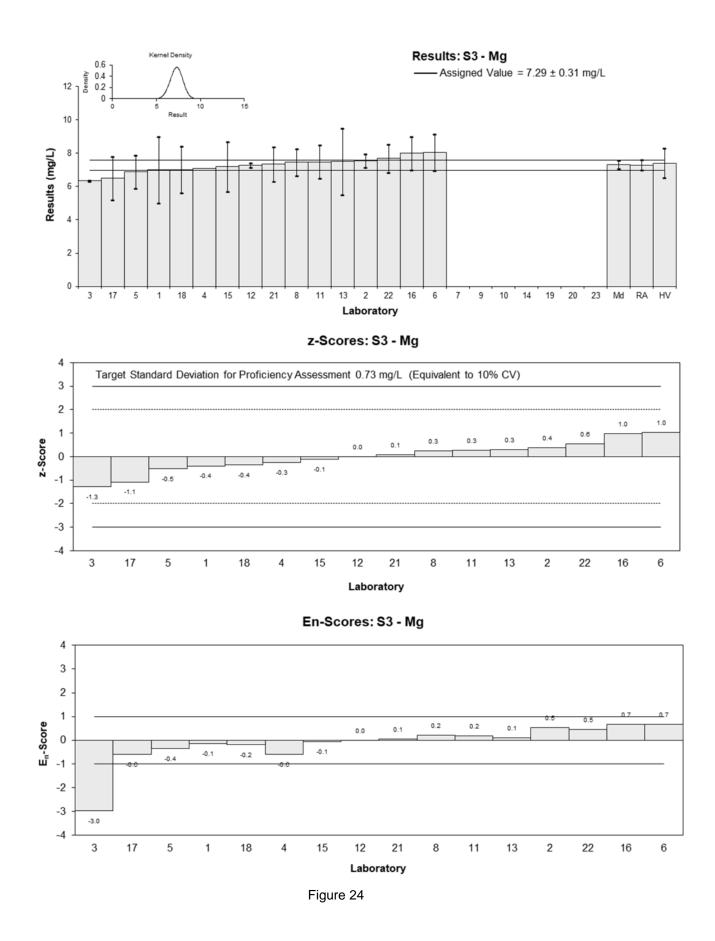


Sample No.	S3
Matrix	River Water
Analyte	К
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	3	1	-0.71	-0.23
2	3.05	0.20	-0.56	-0.72
3	3.67	0.03	1.36	2.88
4	2.92	NR	-0.96	-2.07
5	3.3	1	0.22	0.07
6	3.45	0.60	0.68	0.36
7	NT	NT		
8	3.25	0.4	0.06	0.05
9	NT	NT		
10	NT	NT		
11	3.26	0.5	0.09	0.06
12	3.15	0.06	-0.25	-0.50
13	3.5	1	0.84	0.27
14	NT	NT		
15	3.1	0.43	-0.40	-0.29
16	3	1	-0.71	-0.23
17	3.7	0.4	1.46	1.10
18	3.04	0.608	-0.59	-0.30
19	NT	NT		
20	NT	NT		
21	3.29	0.46	0.19	0.12
22	3.21	0.43	-0.06	-0.04
23	NR	NR		

Assigned Value	3.23	0.15
Assigned value	5.25	0.15
Spike Value	Not Spiked	
Homogeneity Value	3.18	0.38
Robust Average	3.23	0.15
Median	3.23	0.17
Mean	3.24	
Ν	16	
Мах	3.7	
Min	2.92	
Robust SD	0.24	
Robust CV	7.6%	



Sample No.	S3
Matrix	River Water
Analyte	Mg
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	Z	En
1	7	2	-0.40	-0.14
2	7.56	0.40	0.37	0.53
3	6.36	0.04	-1.28	-2.98
4	7.10	NR	-0.26	-0.61
5	6.9	1	-0.53	-0.37
6	8.05	1.09	1.04	0.67
7	NT	NT		
8	7.47	0.8	0.25	0.21
9	NT	NT		
10	NT	NT		
11	7.49	1	0.27	0.19
12	7.29	0.15	0.00	0.00
13	7.5	2	0.29	0.10
14	NT	NT		
15	7.2	1.5	-0.12	-0.06
16	8	1	0.97	0.68
17	6.5	1.3	-1.08	-0.59
18	7.02	1.40	-0.37	-0.19
19	NT	NT		
20	NT	NT		
21	7.35	1.03	0.08	0.06
22	7.69	0.83	0.55	0.45
23	NR	NR		

Assigned Value	7.29	0.31
Spike Value	Not Spiked	
Homogeneity Value	7.41	0.89
Robust Average	7.29	0.31
Median	7.32	0.25
Mean	7.28	
Ν	16	
Мах	8.05	
Min	6.36	
Robust SD	0.49	
Robust CV	6.8%	

Sample No.	S3
Matrix	River Water
Analyte	Na
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	50	10	0.12	0.06
2	51.1	2.50	0.34	0.49
3	51.53	0.54	0.43	0.87
4	49.6	NR	0.04	0.08
5	43	10	-1.30	-0.62
6	55.6	6.2	1.26	0.93
7	NT	NT		
8	49.7	5.5	0.06	0.05
9	NT	NT		
10	NT	NT		
11	50	10	0.12	0.06
12	44.94	0.9	-0.90	-1.74
13	41	10	-1.70	-0.82
14	NT	NT		
15	47.6	7.1	-0.36	-0.24
16	55	1	1.13	2.15
17	49	7	-0.08	-0.05
18	49.2	9.84	-0.04	-0.02
19	NT	NT		
20	NT	NT		
21	48.4	6.8	-0.20	-0.14
22	52.1	4.5	0.55	0.53
23	NR	NR		

Assigned Value	49.4	2.4
Spike Value	Not Spiked	
Homogeneity Value	46.1	5.5
Robust Average	49.4	2.4
Median	49.7	1.5
Mean	49.2	
Ν	16	
Мах	55.6	
Min	41	
Robust SD	3.8	
Robust CV	7.7%	

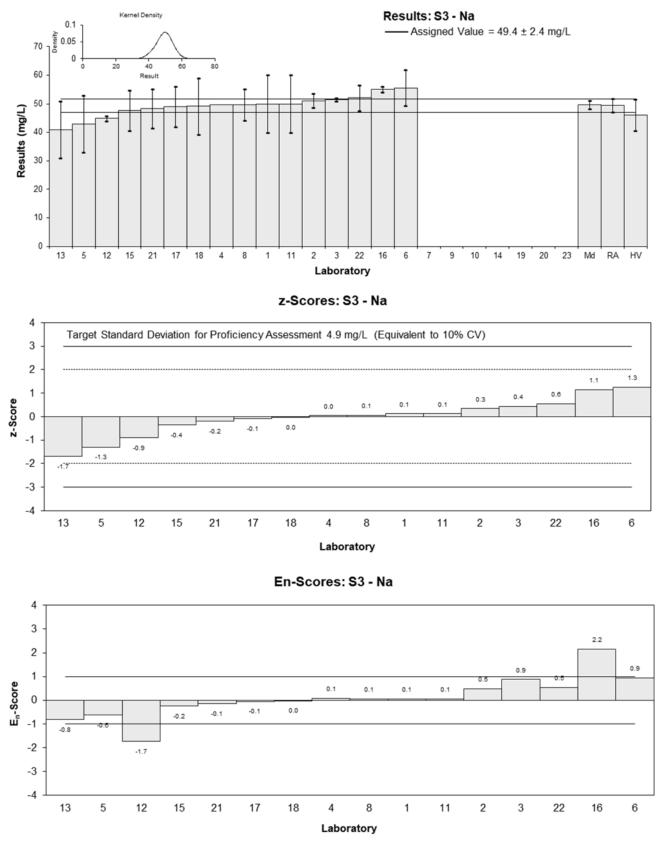
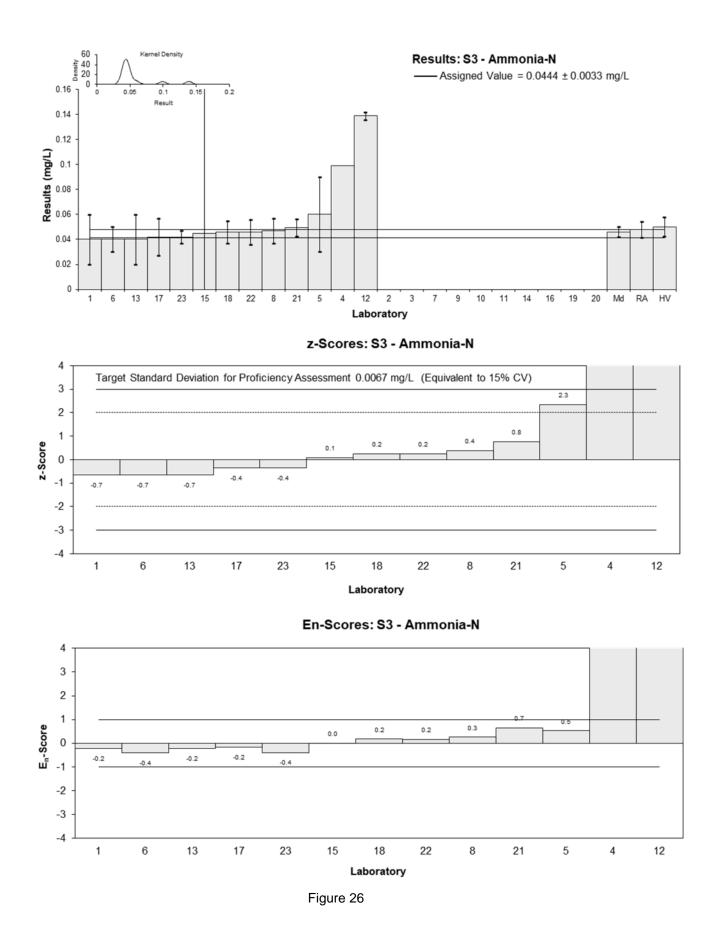


Figure 25

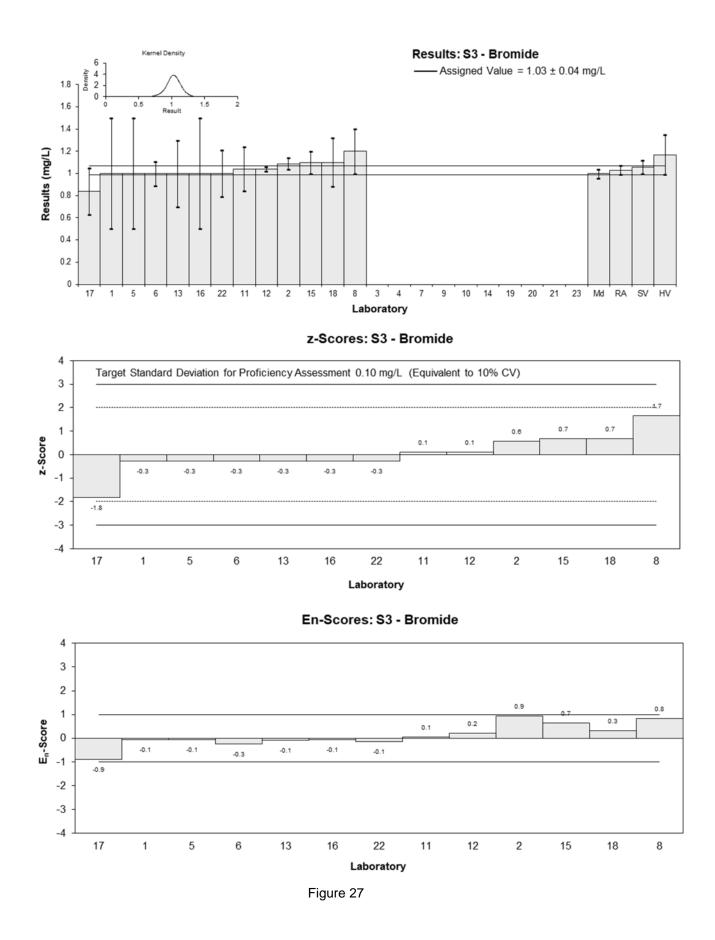

Sample No.	S3
Matrix	River Water
Analyte	Ammonia-N
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	0.04	0.02	-0.66	-0.22
2	NT	NT		
3	<1	0.1		
4*	0.099	NR	8.20	16.55
5	0.06	0.03	2.34	0.52
6	0.04	0.01	-0.66	-0.42
7	NT	NT		
8	0.047	0.01	0.39	0.25
9	NT	NT		
10	NT	NT		
11	NR	NR		
12*	0.139	0.003	14.20	21.21
13	0.04	0.02	-0.66	-0.22
14	NT	NT		
15	0.045	0.6	0.09	0.00
16	<0.2	1.12		
17	0.042	0.015	-0.36	-0.16
18	0.046	0.009	0.24	0.17
19	NT	NT		
20	NT	NT		
21	0.0494	0.0069	0.75	0.65
22	0.046	0.010	0.24	0.15
23	0.042	0.005	-0.36	-0.40

* Outlier, see Section 4.2

Assigned Value	0.0444	0.0033
Spike Value	Not Spiked	
Homogeneity Value	0.0502	0.0075
Robust Average	0.0477	0.0064
Median	0.0460	0.0041
Mean	0.057	
Ν	13	
Мах	0.139	
Min	0.04	
Robust SD	0.0092	
Robust CV	19%	

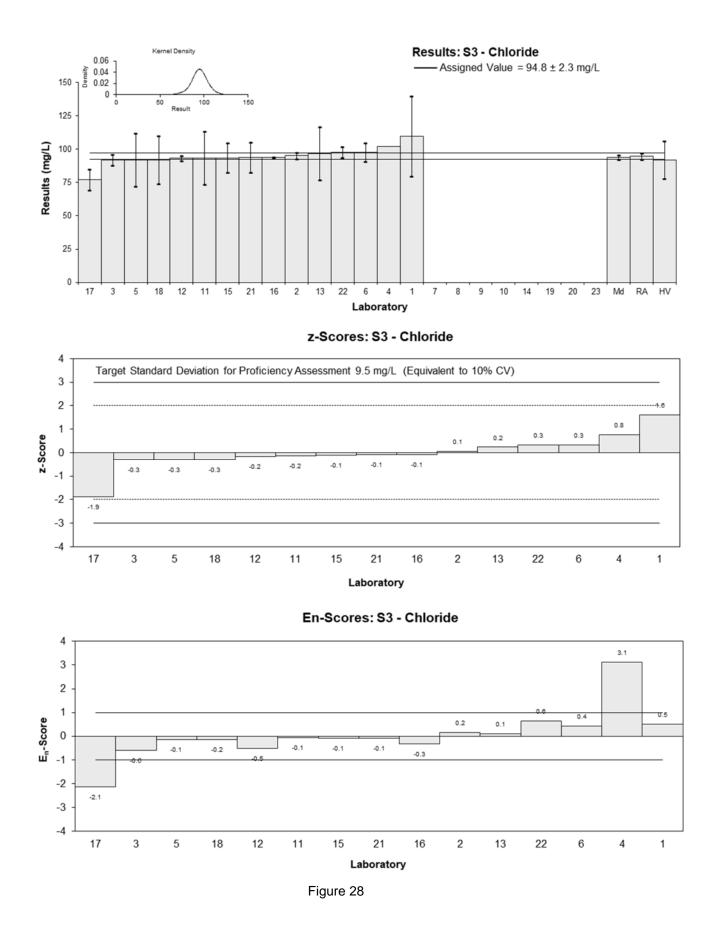


Sample No.	S3
Matrix	River Water
Analyte	Bromide
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	1	0.5	-0.29	-0.06
2	1.09	0.05	0.58	0.94
3	NT	NT		
4	NR	NR		
5	1.0	0.5	-0.29	-0.06
6	1.00	0.11	-0.29	-0.26
7	NT	NT		
8	1.20	0.2	1.65	0.83
9	NT	NT		
10	NT	NT		
11	1.04	0.2	0.10	0.05
12	1.04	0.021	0.10	0.22
13	1	0.3	-0.29	-0.10
14	NT	NT		
15	1.1	0.1	0.68	0.65
16	1	0.5	-0.29	-0.06
17	0.84	0.21	-1.84	-0.89
18	1.1	0.22	0.68	0.31
19	NT	NT		
20	NT	NT		
21	NT	NT		
22	1.0	0.21	-0.29	-0.14
23	NR	NR		

Assigned Value	1.03	0.04
Spike Value	1.06	0.06
Homogeneity Value	1.17	0.18
Robust Average	1.03	0.04
Median	1.00	0.04
Mean	1.03	
Ν	13	
Мах	1.2	
Min	0.84	
Robust SD	0.062	
Robust CV	6%	

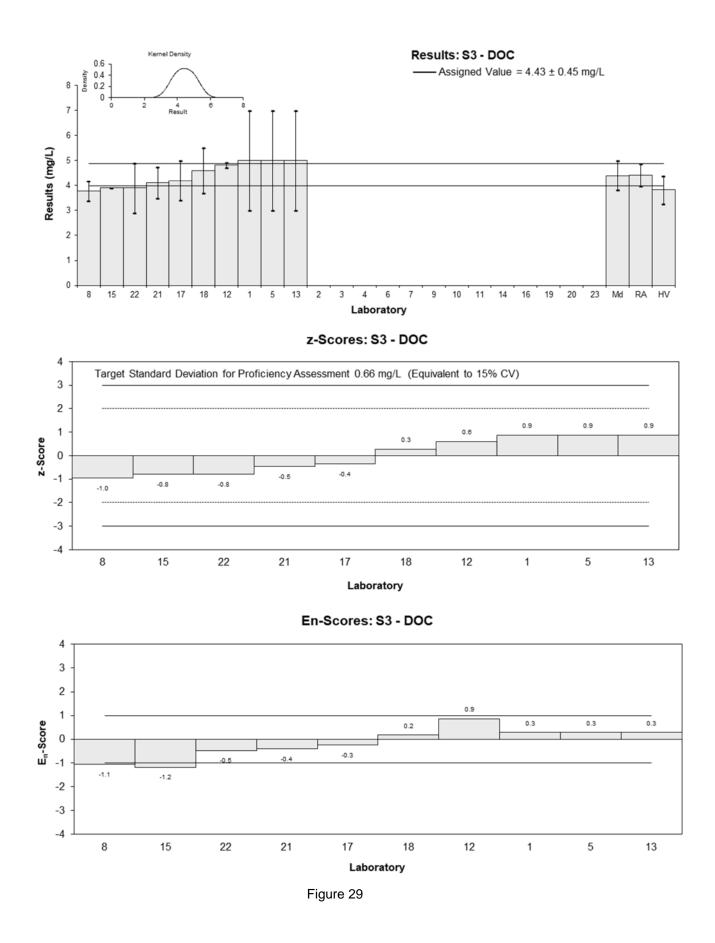


Sample No.	S3
Matrix	River Water
Analyte	Chloride
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	Z	En
1	110	30	1.60	0.51
2	95.3	2.4	0.05	0.15
3	92	4	-0.30	-0.61
4	102	NR	0.76	3.13
5	92	20	-0.30	-0.14
6	97.9	7.0	0.33	0.42
7	NT	NT		
8	NR	NR		
9	NT	NT		
10	NT	NT		
11	93.4	20	-0.15	-0.07
12	93.3	1.87	-0.16	-0.51
13	97	20	0.23	0.11
14	NT	NT		
15	93.7	11	-0.12	-0.10
16	94	0.3	-0.08	-0.34
17	77	8	-1.88	-2.14
18	92	18	-0.30	-0.15
19	NT	NT		
20	NT	NT		
21	93.9	11.3	-0.09	-0.08
22	97.8	4.1	0.32	0.64
23	NR	NR		

Assigned Value	94.8	2.3
Spike Value	Not Spiked	
Homogeneity Value	92	14
Robust Average	94.8	2.3
Median	93.9	1.8
Mean	94.8	
Ν	15	
Мах	110	
Min	77	
Robust SD	3.6	
Robust CV	3.8%	

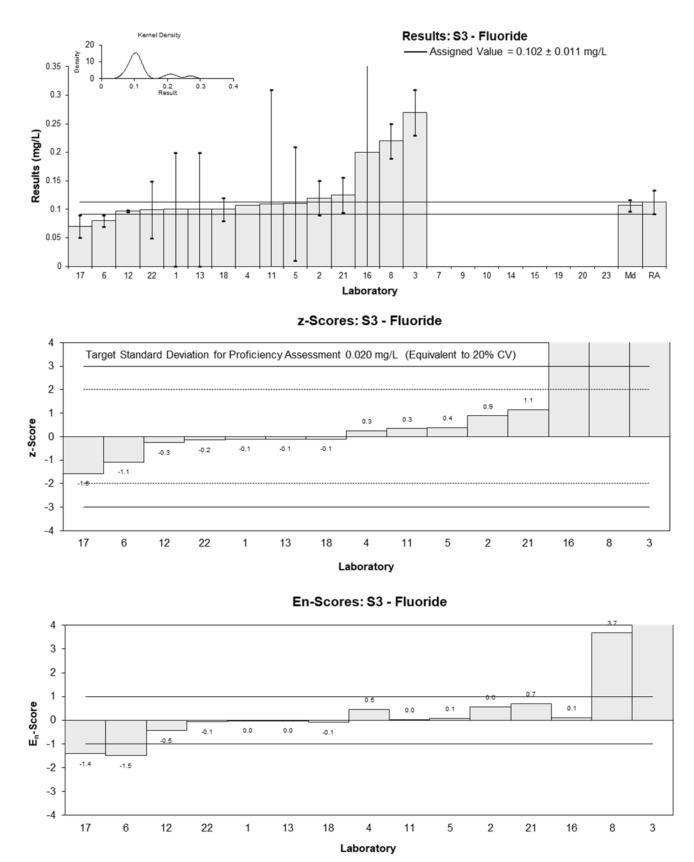

AQA 24-18 Nutrients and Anions in Sea and River Water

Sample No.	S3
Matrix	River Water
Analyte	DOC
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	5	2	0.86	0.28
2	NT	NT		
3	NT	NT		
4	NR	NR		
5	5	2	0.86	0.28
6	NR	NR		
7	NT	NT		
8	3.79	0.4	-0.96	-1.06
9	NT	NT		
10	NT	NT		
11	NR	NR		
12	4.82	0.1	0.59	0.85
13	5	2	0.86	0.28
14	NT	NT		
15	3.9	0	-0.80	-1.18
16	NT	NT		
17	4.2	0.8	-0.35	-0.25
18	4.6	0.92	0.26	0.17
19	NT	NT		
20	NT	NT		
21	4.11	0.62	-0.48	-0.42
22	3.9	1.0	-0.80	-0.48
23	NR	NR		

Assigned Value	4.43	0.45
Spike Value	Not Spiked	
Homogeneity Value	3.82	0.57
Robust Average	4.43	0.45
Median	4.40	0.59
Mean	4.43	
N	10	
Мах	5	
Min	3.79	
Robust SD	0.57	
Robust CV	13%	

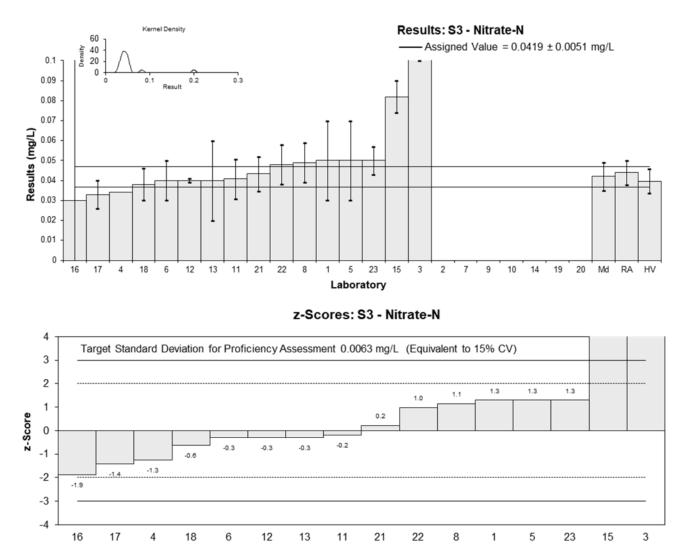

Sample No.	S3
Matrix	River Water
Analyte	Fluoride
Unit	mg/L

Participant Results

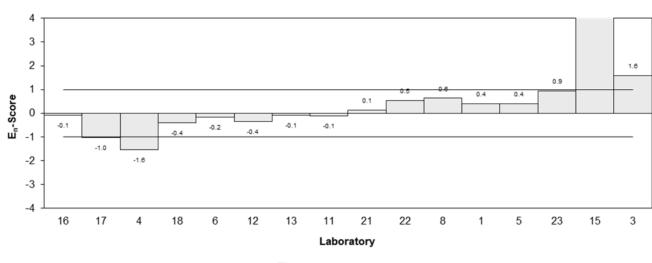
Lab. Code	Result	Uncertainty	Z	En
1	0.1	0.1	-0.10	-0.02
2	0.12	0.03	0.88	0.56
3*	0.27	0.04	8.24	4.05
4	0.107	NR	0.25	0.45
5	0.11	0.1	0.39	0.08
6	0.08	0.01	-1.08	-1.48
7	NT	NT		
8*	0.22	0.03	5.78	3.69
9	NT	NT		
10	NT	NT		
11	0.109	0.2	0.34	0.03
12	0.097	0.002	-0.25	-0.45
13	0.1	0.1	-0.10	-0.02
14	NT	NT		
15	<0.15	NR		
16*	0.2	0.9	4.80	0.11
17	0.07	0.02	-1.57	-1.40
18	0.1	0.02	-0.10	-0.09
19	NT	NT		
20	NT	NT		
21	0.125	0.031	1.13	0.70
22	0.099	0.050	-0.15	-0.06
23	NR	NR		

* Outlier, see Section 4.2

Assigned Value	0.102	0.011
Spike Value	Not Spiked	
Robust Average	0.113	0.021
Median	0.107	0.010
Mean	0.127	
Ν	15	
Max	0.27	
Min	0.07	
Robust SD	0.032	
Robust CV	28%	


Sample No.	S3
Matrix	River Water
Analyte	Nitrate-N
Unit	mg/L

Participant Results


Lab. Code	Result	Uncertainty	z	En
1	0.05	0.02	1.29	0.39
2	NT	NT		
3*	0.2	0.1	25.16	1.58
4	0.034	NR	-1.26	-1.55
5	0.050	0.02	1.29	0.39
6	0.04	0.01	-0.30	-0.17
7	NT	NT		
8	0.049	0.01	1.13	0.63
9	NT	NT		
10	NT	NT		
11	0.0407	0.01	-0.19	-0.11
12	0.04	0.001	-0.30	-0.37
13	0.04	0.02	-0.30	-0.09
14	NT	NT		
15*	0.082	0.008	6.38	4.23
16	0.03	0.14	-1.89	-0.08
17	0.033	0.007	-1.42	-1.03
18	0.038	0.008	-0.62	-0.41
19	NT	NT		
20	NT	NT		
21	0.0433	0.0087	0.22	0.14
22	0.048	0.010	0.97	0.54
23	0.050	0.007	1.29	0.94

* Outlier, see Section 4.2

Assigned Value	0.0419	0.0051
Spike Value	Not Spiked	
Homogeneity Value	0.0397	0.0060
Robust Average	0.0439	0.0060
Median	0.0420	0.0070
Mean	0.054	
Ν	16	
Мах	0.2	
Min	0.03	
Robust SD	0.0096	
Robust CV	22%	

En-Scores: S3 - Nitrate-N

Figure 31

Sample No.	S3
Matrix	River Water
Analyte	Nitrite-N
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty
1	<0.005	NR
2	NT	NT
3	0.003	0.001
4	< 0.01	NR
5	<0.005	NT
6	0.001	0.000
7	NT	NT
8	<0.005	NR
9	NT	NT
10	NT	NT
11	<0.01	0.01
12	NR	NR
13	<0.005	NR
14	NT	NT
15	0.016	0.002
16	NT	NT
17	0.007	0.002
18	<0.005	0.001
19	NT	NT
20	NT	NT
21	<0.002	NR
22	<0.010	0.010
23	<0.002	0.007

Assigned Value	Not Set	
Spike Value	Not Spiked	
Robust Average	NA (N<6)	
Median	0.0050	0.0056
Mean	0.00675	
Ν	4	
Мах	0.016	
Min	0.001	
Robust SD	NA (N<6)	
Robust CV	NA (N<6)	

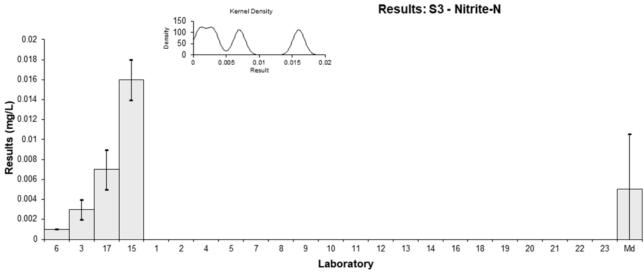


Figure 32

Sample No.	S3
Matrix	River Water
Analyte	Orthophosphate-P
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	0.041	0.03	-0.51	-0.11
2	0.037	0.005	-1.11	-0.91
3	0.06	0.01	2.34	1.31
4	0.058	NR	2.04	2.12
5*	0.089	0.04	6.70	1.10
6	0.038	0.006	-0.96	-0.73
7	NT	NT		
8	0.043	0.005	-0.21	-0.17
9	NT	NT		
10	NT	NT		
11	0.0388	0.01	-0.84	-0.47
12	0.037	0.001	-1.11	-1.14
13	0.058	0.02	2.04	0.65
14	NT	NT		
15	0.044	0.004	-0.06	-0.05
16	NT	NT		
17	0.043	0.009	-0.21	-0.13
18	0.051	0.01	0.99	0.56
19	NT	NT		
20	NT	NT		
21	0.0378	0.0076	-0.99	-0.66
22	0.036	0.005	-1.26	-1.03
23	NR	0.005		

* Outlier, see Section 4.2

Assigned Value	0.0444	0.0064
Spike Value	0.0460	0.0016
Homogeneity Value	0.0503	0.0076
Robust Average	0.0456	0.0069
Median	0.0430	0.0057
Mean	0.0474	
Ν	15	
Max	0.089	
Min	0.036	
Robust SD	0.011	
Robust CV	23%	

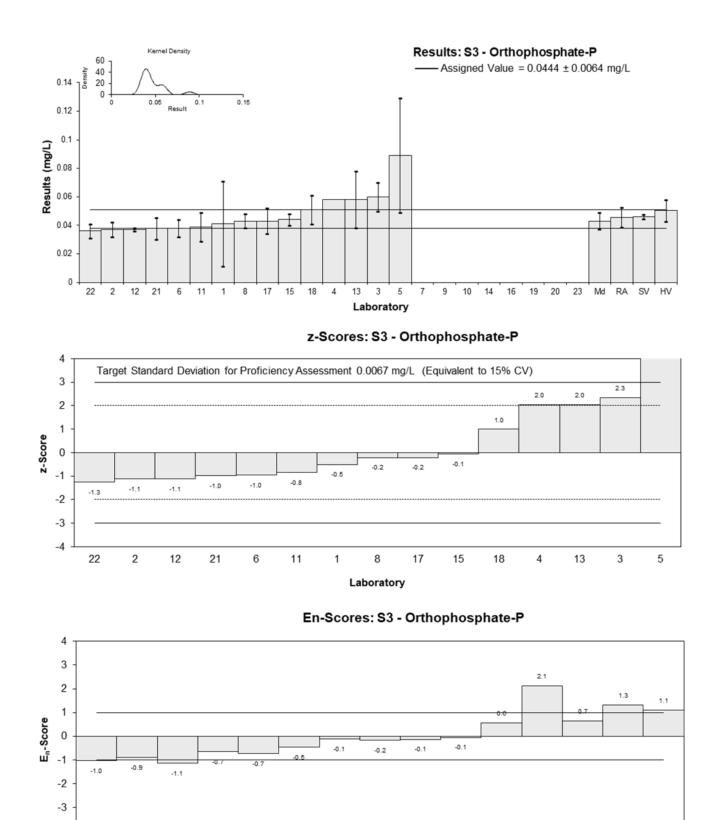


Figure 33

Laboratory

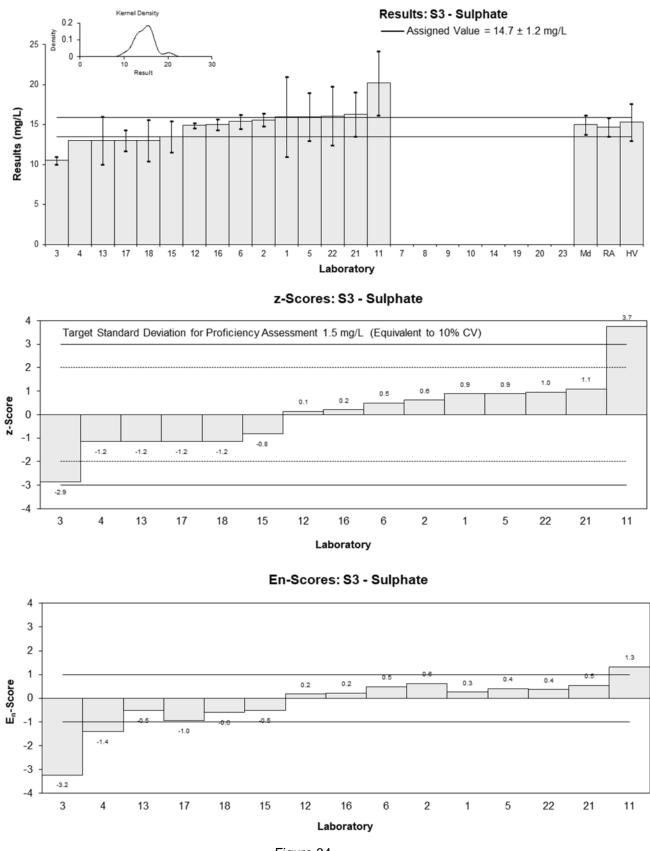
-4

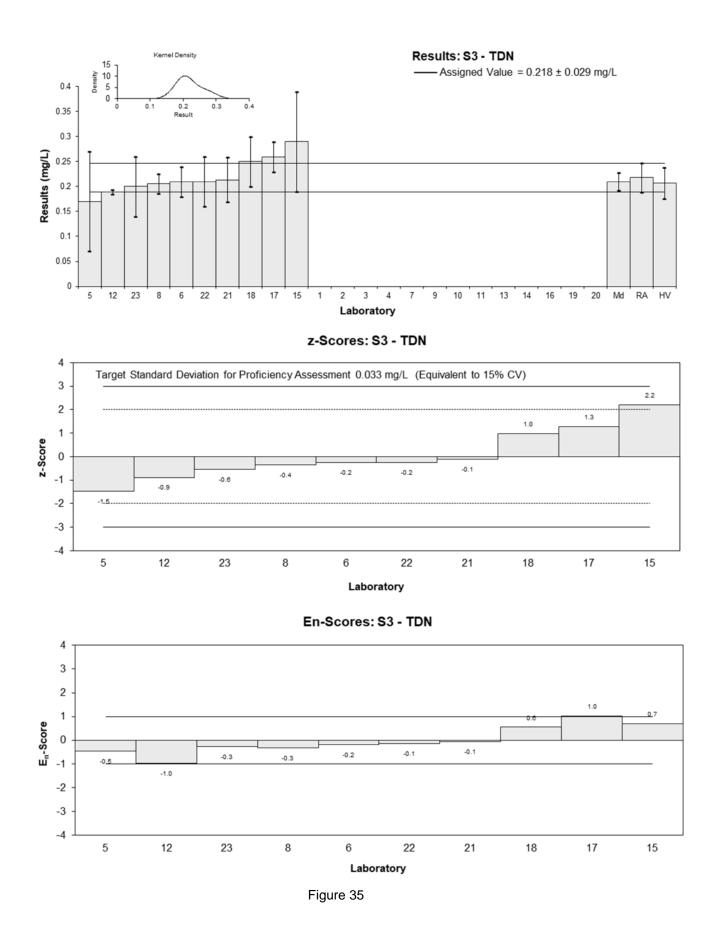
Sample No.	S3
Matrix	River Water
Analyte	Sulphate
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	16	5	0.88	0.25
2	15.6	0.80	0.61	0.62
3	10.5	0.5	-2.86	-3.23
4	13.0	NR	-1.16	-1.42
5	16	3	0.88	0.40
6	15.4	0.9	0.48	0.47
7	NT	NT		
8	NR	NR		
9	NT	NT		
10	NT	NT		
11	20.2	4	3.74	1.32
12	14.91	0.3	0.14	0.17
13	13	3	-1.16	-0.53
14	NT	NT		
15	13.5	2	-0.82	-0.51
16	15	0.7	0.20	0.22
17	13	1.3	-1.16	-0.96
18	13	2.6	-1.16	-0.59
19	NT	NT		
20	NT	NT		
21	16.3	2.8	1.09	0.53
22	16.1	3.7	0.95	0.36
23	NR	NR		

	447	1.0
Assigned Value	14.7	1.2
Spike Value	Not Spiked	
Homogeneity Value	15.3	2.3
Robust Average	14.7	1.2
Median	15.0	1.2
Mean	14.8	
N	15	
Мах	20.2	
Min	10.5	
Robust SD	1.9	
Robust CV	13%	



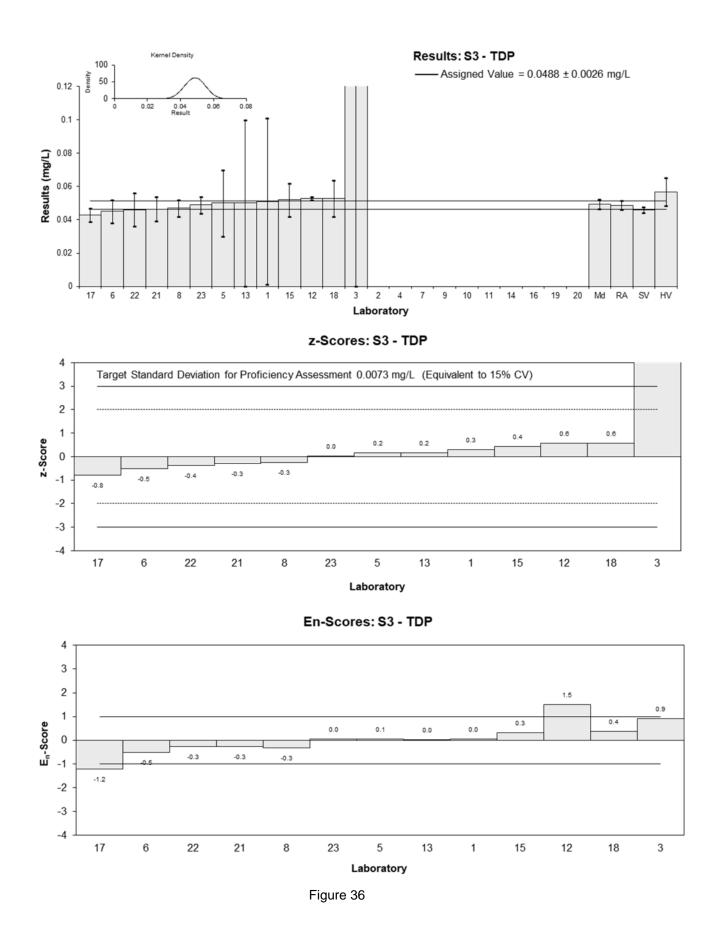

Figure 34

Sample No.	S3
Matrix	River Water
Analyte	TDN
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	<0.1	NR		
2	NT	NT		
3	NT	NT		
4	NR	NR		
5	0.17	0.1	-1.47	-0.46
6	0.21	0.03	-0.24	-0.19
7	NT	NT		
8	0.206	0.02	-0.37	-0.34
9	NT	NT		
10	NT	NT		
11	NR	NR		
12	0.189	0.004	-0.89	-0.99
13	<0.1	NR		
14	NT	NT		
15	0.29	0.1	2.20	0.69
16	NT	NT		
17	0.26	0.03	1.28	1.01
18	0.25	0.05	0.98	0.55
19	NT	NT		
20	NT	NT		
21	0.214	0.045	-0.12	-0.07
22	0.21	0.05	-0.24	-0.14
23	0.2	0.06	-0.55	-0.27

Assigned Value	0.218	0.029
Spike Value	Not Spiked	
Homogeneity Value	0.207	0.031
Robust Average	0.218	0.029
Median	0.210	0.018
Mean	0.220	
Ν	10	
Мах	0.29	
Min	0.17	
Robust SD	0.037	
Robust CV	17%	

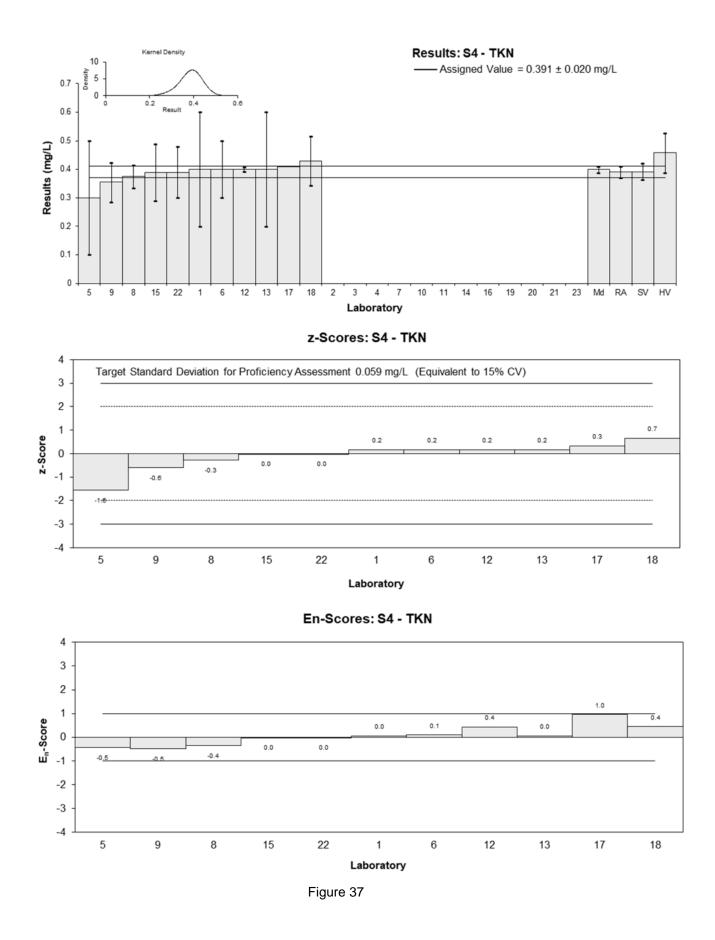

Sample No.	S3
Matrix	River Water
Analyte	TDP
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	Z	En
1	0.051	0.05	0.30	0.04
2	NT	NT		
3**	0.60	0.6	75.30	0.92
4	NR	NR		
5	0.05	0.02	0.16	0.06
6	0.045	0.007	-0.52	-0.51
7	NT	NT		
8	0.047	0.005	-0.25	-0.32
9	NT	NT		
10	NT	NT		
11	NR	NR		
12	0.053	0.001	0.57	1.51
13	0.05	0.05	0.16	0.02
14	NT	NT		
15	0.052	0.01	0.44	0.31
16	NT	NT		
17	0.043	0.004	-0.79	-1.22
18	0.053	0.011	0.57	0.37
19	NT	NT		
20	NT	NT		
21	0.0465	0.0074	-0.31	-0.29
22	0.046	0.010	-0.38	-0.27
23	0.049	0.005	0.03	0.04

** Extreme Outlier, see Section 4.2

Assigned Value	0.0488	0.0026
Spike Value	0.0460	0.0016
Homogeneity Value	0.0568	0.0085
Robust Average	0.0488	0.0026
Median	0.0495	0.0029
Mean	0.0488	
Ν	12	
Мах	0.053	
Min	0.043	
Robust SD	0.0036	
Robust CV	7.5%	

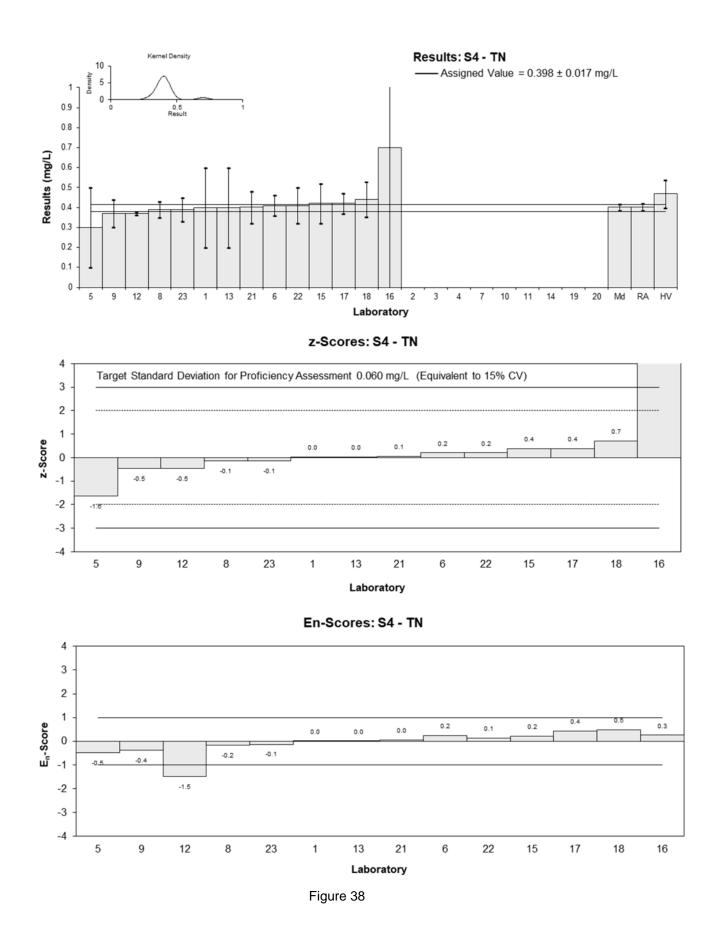


Sample No.	S4
Matrix	River Water
Analyte	TKN
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	0.4	0.2	0.15	0.04
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	0.3	0.2	-1.55	-0.45
6	0.40	0.10	0.15	0.09
7	NT	NT		
8	0.375	0.04	-0.27	-0.36
9	0.355	0.070	-0.61	-0.49
10	NT	NT		
11	NR	NR		
12	0.4	0.008	0.15	0.42
13	0.4	0.2	0.15	0.04
14	NT	NT		
15	0.39	0.1	-0.02	-0.01
16	NT	NT		
17	0.41	NR	0.32	0.95
18	0.43	0.086	0.66	0.44
19	NT	NT		
20	NT	NT		
21	NT	NT		
22	0.39	0.09	-0.02	-0.01
23	NR	NR		

Assigned Value	0.391	0.020
Spike Value	0.392	0.029
Homogeneity Value	0.458	0.069
Robust Average	0.391	0.020
Median	0.400	0.011
Mean	0.386	
N	11	
Мах	0.43	
Min	0.3	
Robust SD	0.026	
Robust CV	6.7%	

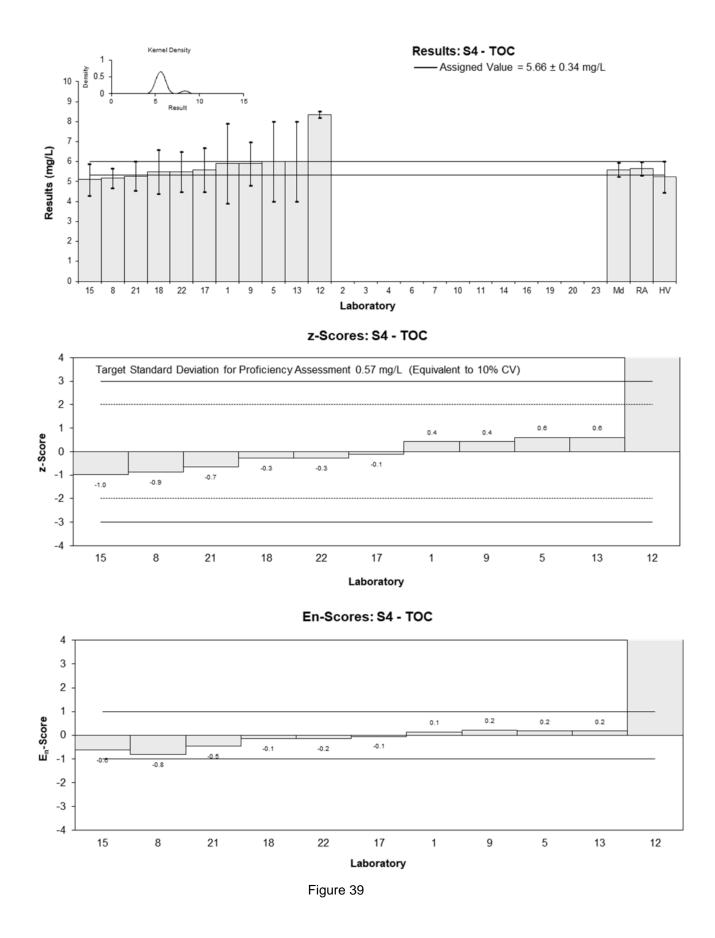

Sample No.	S4
Matrix	River Water
Analyte	TN
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	0.4	0.2	0.03	0.01
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	0.3	0.2	-1.64	-0.49
6	0.41	0.05	0.20	0.23
7	NT	NT		
8	0.390	0.04	-0.13	-0.18
9	0.370	0.070	-0.47	-0.39
10	NT	NT		
11	NR	NR		
12	0.37	0.008	-0.47	-1.49
13	0.4	0.2	0.03	0.01
14	NT	NT		
15	0.42	0.1	0.37	0.22
16*	0.7	1.2	5.06	0.25
17	0.42	0.05	0.37	0.42
18	0.44	0.088	0.70	0.47
19	NT	NT		
20	NT	NT		
21	0.401	0.080	0.05	0.04
22	0.41	0.09	0.20	0.13
23	0.39	0.06	-0.13	-0.13

* Outlier, see Section 4.2

Assigned Value	0.398	0.017
Spike Value	Not Spiked	
Homogeneity Value	0.468	0.070
Robust Average	0.402	0.019
Median	0.401	0.015
Mean	0.416	
Ν	14	
Мах	0.7	
Min	0.3	
Robust SD	0.028	
Robust CV	7.1%	



Sample No.	S4
Matrix	River Water
Analyte	TOC
Unit	mg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	5.9	2	0.42	0.12
2	NT	NT		
3	NT	NT		
4	NT	NT		
5	6	2	0.60	0.17
6	NR	NR		
7	NT	NT		
8	5.17	0.5	-0.87	-0.81
9	5.9	1.1	0.42	0.21
10	NT	NT		
11	NR	NR		
12	8.36	0.17	4.77	7.10
13	6	2	0.60	0.17
14	NT	NT		
15	5.1	0.8	-0.99	-0.64
16	NT	NT		
17	5.6	1.1	-0.11	-0.05
18	5.5	1.1	-0.28	-0.14
19	NT	NT		
20	NT	NT		
21	5.28	0.74	-0.67	-0.47
22	5.5	1.0	-0.28	-0.15
23	NR	NR		

Assigned Value	5.66	0.34
Spike Value	Not Spiked	
Homogeneity Value	5.23	0.79
Robust Average	5.66	0.34
Median	5.60	0.36
Mean	5.85	
Ν	11	
Мах	8.36	
Min	5.1	
Robust SD	0.45	
Robust CV	7.9%	

6 DISCUSSION OF RESULTS

6.1 Assigned Value

Assigned Values were the robust average of participants' results. The robust averages and their associated expanded uncertainties were calculated using the procedure described in 'ISO13528, Statistical methods for use in proficiency testing by inter-laboratory comparisons'. Results less than 50% and more than 150% of the robust average were removed before calculation of each assigned value.⁶ Appendix 3 sets out the calculation for the assigned value of K in Sample S3 and its associated uncertainty.

No assigned value was set for nitrite-N in S3 because the reported results were too few. Participants may still compare their reported result for nitrite-N with other participants' results.

Spiked Value where applicable, includes both the incurred value and the fortified value. The incurred values for Ammonia-N and Nitrate-N + Nitrite-N in S1 are not available.

Traceability: The consensus of participants' results (robust average) is not traceable to any external reference. Therefore, although expressed in SI units, the metrological traceability of the assigned value has not been established.

6.2 Measurement Uncertainty Reported by Participants

Participants were asked to report an evaluation of the expanded measurement uncertainty associated with their results. Of 534 numerical results, 518 (97%) were reported with an expanded measurement uncertainty, indicating that laboratories have addressed this requirement of ISO 17025.⁸ The magnitude of these expanded uncertainties was within the range 0% to 1333% of the reported value. The participants used a wide variety of procedures to evaluate the expanded measurement uncertainty. These are presented in Table 2.

Approaches to evaluating measurement uncertainty include standard deviation of replicate analyses, Horwitz formula, long term reproducibility, professional judgement, bottom up approach, top down approach using precision and estimates of method and laboratory bias, and top down approach using only the reproducibility from inter-laboratory comparison studies.^{9–14}

Participation in proficiency testing programs allows participants to check how reasonable their evaluation of uncertainty is. Results and expanded uncertainties are presented in the bar charts for each analyte (Figure 2 to 39). As a simple rule of thumb, when the uncertainty is smaller than uncertainty of the assigned value, or larger than the uncertainty of the assigned value plus twice the target standard deviation, then this should be reviewed as suspect. For example, 16 laboratories reported results for Na in S3. The uncertainty of the assigned value as determined from the robust standard deviation of the 16 laboratories' results is 2.4 mg/L (5% of the assigned value). Laboratory 3 reported an uncertainty of 0.54 mg/L (1% of their reported value) which may have been underestimated, as an uncertainty evaluated from one measurement cannot be smaller than the uncertainty evaluated from 16 measurements in different laboratories.

Alternatively, reported uncertainties for fluoride in S3 larger than 0.0518 mg/L (the uncertainty of the assigned value, 0.011 mg/L, plus the allowable variation from the assigned value, the target standard deviation of 0.0204 mg/L, multiplied by 2, the coverage factor for a confidence interval of 95%), should also be viewed as suspect. For example, the expanded measurement uncertainty reported by Laboratory 5 for fluoride in S3 (0.1 mg/L) might have been over-estimated.

When a laboratory has successfully participated in at least 6 proficiency testing studies, the standard deviation from proficiency testing studies only, can also be used to evaluate the

uncertainty of their measurement results.¹⁰ An example of evaluating measurement uncertainty using proficiency testing data only is given in Appendix 4.

Laboratory 12 should assess their procedure used for evaluating measurement uncertainty, as most of their reported uncertainties were under-estimated.

Laboratories 1, 3, 5, 11, 13, 15, 16 and 20 all reported at least one measurement uncertainty greater than or equal to their reported result.

Further, Laboratories 3, 9, 11, 16, 18, 22, and 23 all reported measurement uncertainty with one or more non-numerical value. An uncertainty expressed as a value cannot be attached to a result expressed as a range.⁹

In some cases, the results were reported with an inappropriate number of significant figures. The recommended format is to write the uncertainty to no more than two significant figures and then to write the result with the corresponding number of decimal places. For example, instead of $2990 \pm 228 \text{ mg/L}$, it is better to report $2990 \pm 230 \text{ mg/L}$ or, instead of $4.60 \pm 0.5 \text{ mg/L}$, it is better to report $4.6 \pm 0.5 \text{ mg/L}$.⁹

6.3 z-Score

The z-score compares the participant's deviation from the assigned value with the target standard deviation set for proficiency assessment.

The target standard deviation defines acceptable performance in a proficiency test. Target standard deviations equivalent to 3.5% to 20% PCV were used to calculate z-scores. A set target standard deviation enables z-scores to be used as fixed reference value points for assessment of laboratory performance, independent of group performance.

The between laboratory coefficient of variation predicted by the Thompson equation⁷ and the participants' coefficient of variation (outliers removed) resulted in this study are presented for comparison in Table 43.

The dispersal of participants' z-scores is presented in Figure 40 (by laboratory code) and in Figure 42 (by analyte).

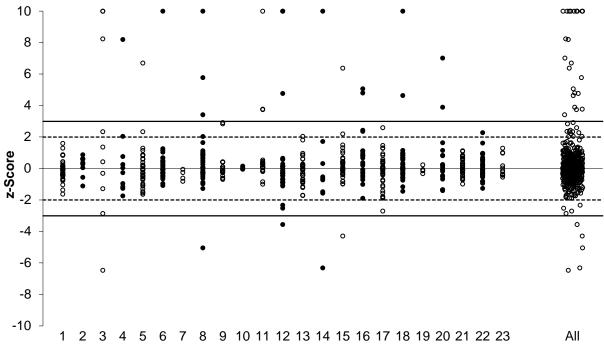
Of 530 results for which z-scores were calculated, 486 (92%) returned an acceptable score of $|z| \le 2.0$ and 16 (3%) were questionable at 2.0 < |z| < 3.0.

Participants with multiple z-scores greater than 2 or less than -2 should check for laboratory bias (Figure 40).

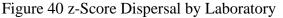
Laboratories **5**, **18**, and **22** reported results for all 37 tests for which a z-score was calculated. Laboratories **1** and **22** returned the highest number of acceptable z-scores (36).

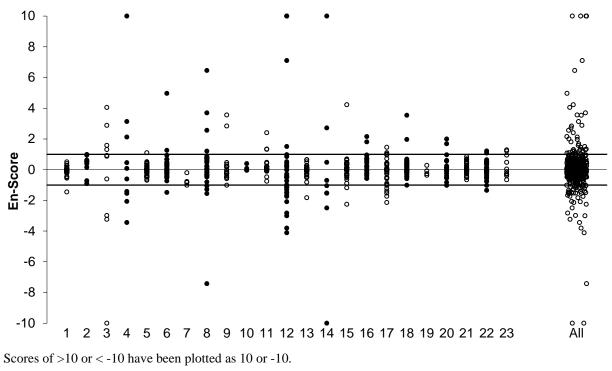
All results reported by laboratories **1** (36), **21** (33), **23** (11), **2** (10), **7** (4), **10** (4) and **19** (4) also returned acceptable z scores.

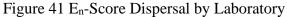
Summary of participants' performance is presented in Figure 43.


6.4 E_n-score

 E_n -scores can be interpreted in conjunction with z-scores. The E_n -score indicates how closely a result agrees with the assigned value, when taking into consideration the respective uncertainties. An unacceptable E_n -score for an analyte can either be caused by an inappropriate measurement, an inappropriate evaluation of measurement uncertainty, or both.


The dispersal of participants' E_n -scores is graphically presented in Figure 41. Where a laboratory did not report an expanded uncertainty with a result, an expanded uncertainty of zero (0) was used to calculate the E_n -score.


Of 530 results for which E_n -scores were calculated, 443 (84%) returned an acceptable score of $|E_n| < 1.0$ indicating agreement of the participants' results with the assigned values within their respective expanded measurement uncertainties.


Laboratory **5** returned the highest number of acceptable E_n -scores (36). All results reported by Laboratories **21** (33), **2** (10), **10** (4) and **19** (4) returned acceptable E_n -scores.

Scores of >10 or <-10 have been plotted as 10 or -10.

Sample	Test	Assigned value (mg/L)	Between Laboratories CV*	Thompson/ Horwitz CV	Target SD (as PCV)
S 1	Ammonia-N	0.0836	13%	22%	15%
S 1	Chloride	21600	3.9%	3.6%	10%
S 1	DOC	1.12	11%	16%	15%
S1	Fluoride	1.01	24%	16%	20%
S1	Nitrate-N +Nitrite-N	0.0610	6.9%	22%	15%
S1	Orthophosphate-P	0.118	5.7%	22%	15%
S1	Sulphate	2920	9.4%	4.8%	10%
S1	TDN	0.219	17%	20%	20%
S1	TDP	0.128	12%	22%	15%
S2	В	4.53	13%	13%	15%
S2	Ca	418	5.6%	6.4%	10%
S2	K	421	15%	6.4%	10%
S2	Mg	1310	5.9%	5.4%	10%
S2	Na	11100	6.5%	3.9%	10%
S2	Alkalinity	120	6.3%	7.8%	10%
S2	EC	53800 µS/cm	6.1%	3.1%	10%
S2	pН	7.98	3.2%	12%	3.5%
S2	Silica (as SiO2)	0.089	19%	22%	20%
S2	Total Hardness	6410	6.6%	4.3%	10%
S3	В	0.791	10%	17%	15%
S3	Ca	17.8	7.6%	10%	10%
S 3	K	3.23	7.6%	13%	10%
S3	Mg	7.29	6.8%	12%	10%
S3	Na	49.4	7.7%	8.9%	10%
S 3	Ammonia-N	0.0444	9.9%	22%	15%
S3	Bromide	1.03	6.0%	16%	10%
S3	Chloride	94.8	3.8%	8.1%	10%
S 3	DOC	4.43	13%	13%	15%
S3	Fluoride	0.102	15%	22%	20%
S3	Nitrate-N	0.0419	18%	22%	15%
S 3	Nitrite-N	Not Set	NA	NA	Not Set
S 3	Orthophosphate-P	0.0444	22%	22%	15%
S 3	Sulphate	14.7	13%	11%	10%
S 3	TDN	0.218	17%	20%	15%
S 3	TDP	0.0488	7.5%	22%	15%
S4	TKN	0.391	6.7%	18%	15%
S4	TN	0.398	6.2%	18%	15%
S4	TOC	5.66	7.9%	12%	10%

Table 43 Between Laboratory CV of this study, Thompson CV and Set Target CV

NA = Not Available, *Robust between Laboratories CV with outliers removed.

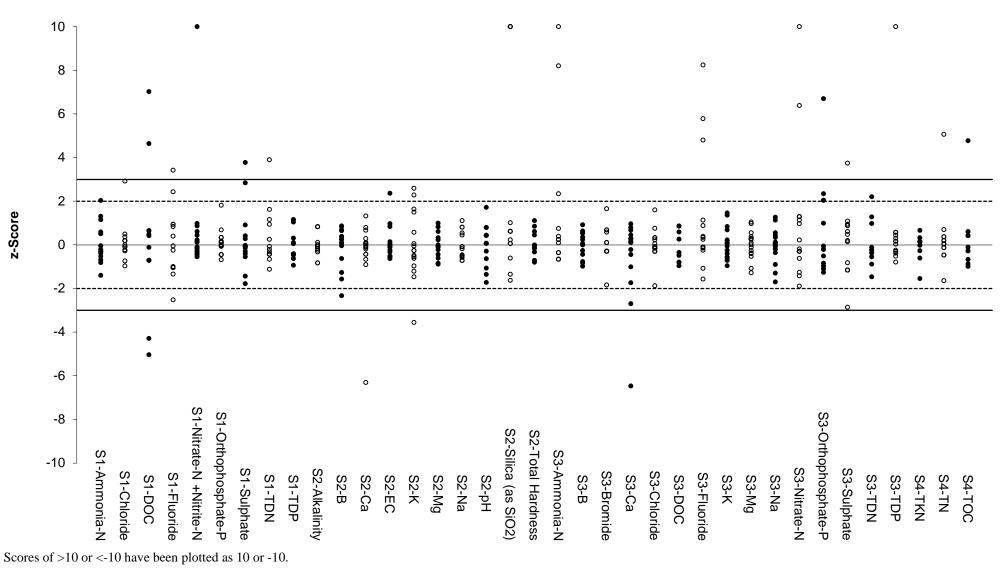
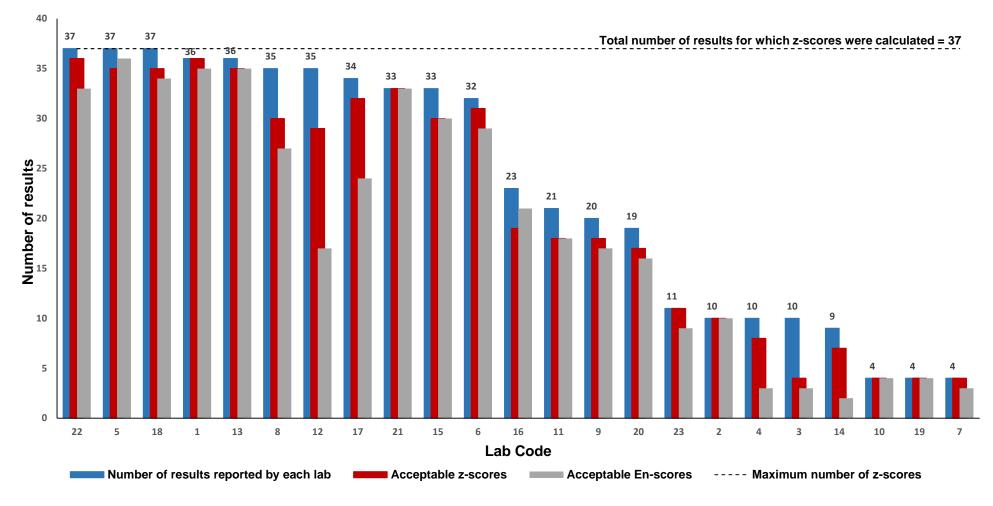



Figure 42 z-Score Dispersal by Analyte

AQA 24-18 Nutrients and Anions in Sea and River Water

Summary of Participant's Performance in AQA 24-18 Samples S1, S2, S3 and S4

Figure 43 Summary of Participants' Performance

AQA 24-18 Nutrients and Anions in Sea and River Water

Lab	Ammonia-N	Chloride	DOC	Fluoride	Nitrate-N +Nitrite-N	Orthophosphate-P	Sulphate	TDN	TDP
Code	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
AV	0.0836	21600	1.12	1.01	0.0610	0.118	2920	0.219	0.128
HV	0.077	20000	1.35	1.08	0.0648	0.120	2580	0.165	0.120
1	0.079	22000	1	0.8	0.065	0.11	2800	0.2	0.13
2	NT	NT	NT	NT	NT	NT	NT	NT	NT
3	NT	NT	NT	NT	NT	NT	NT	NT	NT
4	NT	NT	NT	NT	NT	NT	NT	NT	NT
5	0.091	22000	1.0	0.8	0.060	0.12	2900	0.17	0.15
6	0.09	21400	NR	0.96	0.06	0.118	3039	0.27	0.119
7	0.0734	NT	NT	NT	0.0587	0.1171	NT	NT	NT
8	0.109	22659	0.274	1.7	0.069	0.130	3185	0.205	0.148
9	0.075	27900	1.19	1.09	0.0597	0.118	3750	<0.3	0.1159
10	0.0831	NT	NT	NT	0.0624	0.1173	NT	NT	NT
11	NR	21400	NR	0.808	0.301	0.120	4020	NR	NR
12	NR	21592	1.23	0.50	0.057	0.106	2831	0.190	NR
13	0.08	22000	1	1	0.057	0.15	2900	0.2	0.12
14	NT	NT	NT	NT	NT	NT	NT	NT	NT
15	0.083	19500	0.4	<10	0.058	0.124	2760	0.23	0.129
16	<0.2	21108	NT	1.5	NT	NT	3002	NT	NT
17	0.1	21000	1.2	<10	0.062	0.12	2400	0.26	0.12
18	0.098	20000	1.9	1.2	0.056	0.12	2500	0.21	0.12
19	0.0796	NT	NT	NT	0.0597	0.1168	NT	NT	NT
20	0.066	22000	2.3	0.74	0.063	0.11	2900	0.39	0.15
21	0.0800	22400	1.23	1.18	0.0666	0.124	2880	0.216	0.134
22	0.077	21400	1.1	1.2	0.058	0.11	2910	0.29	0.11
23	0.081	NR	NR	NR	0.070	0.121	NR	0.2	0.12

Table 44 Summary of Participants' Results and Performance for Sample S1

Shaded cells are results which returned a questionable or unacceptable z-score. AV = Assigned Value, HV = Homogeneity Value, SV = Spike Value, NT = Not Tested, NR = Not Reported, NA = Not Available

Lab Code	B (mg/L)	Ca (mg/L)	K (mg/L)	Mg (mg/L)	Na (mg/L)	Alkalinity (mg/L)	EC (µS/cm)	рН	Silica (mg/L)	Total Hardness (mg/L)
AV	4.53	418	421	1310	11100	120	53800	7.98	0.089	6410
HV	4.92	418	406	1320	10200	NA	53000	8.00	NA	6360
1	4.5	410	410	1300	11000	130	52000	7.6	0.06	6400
2	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
5	4.1	400	380	1300	12000	120	51000	7.8	0.1	6400
6	4.58	415	419	1252	10460	NR	NR	8.10	0.64	6200
7	NT	NT	NT	NT	NT	NT	NT	NT	0.0781	NT
8	3.67	451	395	1309	10559	117	58300	8.00	13.0	6800
9	4.6	417	410	1280	10900	121.3	53200	8.1	<1.0	6330
10	NT	NT	NT	NT	NT	NT	NT	NT	0.0901	NT
11	4.79	430	423	1340	11700	NR	NR	NR	NR	NR
12	2.95	413	271	1194	10590	116	54560	7.68	0.296	5947
13	4.7	380	370	1200	11000	110	59000	7.5	0.1	5900
14	3.46	154.07	359.21	1351.68	10511.29	NT	50400	8.46	1.40	5951
15	NT	473	484	1440	11600	118	52500	8.1	0.1	7120
16	4.79	446	398	1418	12330	119	66500	8.2	NT	6955
17	5.1	420	530	1300	10300	120	53800	8.1	<0.1	NT
18	5.12	420	445	1300	11000	130	54000	8.0	0.321	6402
19	NT	NT	NT	NT	NT	NT	NT	NT	0.0931	NT
20	4.7	390	490	1300	12000	130	51000	8.0	0.065	6300
21	4.97	422	401	1230	10300	119	53500	8.2	NT	NT
22	5.0	400	517	1390	11000	110	50900	7.9	0.090	6700
23	NR	NR	NR	NR	NR	NR	NR	NR	0.107	NR

Table 45 Summary of Participants' Results and Performance for Sample S2

Shaded cells are results which returned a questionable or unacceptable z-score. AV = Assigned Value, HV = Homogeneity Value, NT = Not Tested, NR = Not Reported, NA = Not Available

Lab Code	S3-B (mg/L)	S3-Ca (mg/L)	S3-K (mg/L)	S3-Mg (mg/L)	S3-Na (mg/L)	S3-Ammonia-N (mg/L)	S3-Bromide (mg/L)	S3-Chloride (mg/L)	S3-DOC (mg/L)	S3-Fluoride (mg/L)
AV	0.791	17.8	3.23	7.29	49.4	0.0444	1.03	94.8	4.43	0.102
HV	0.799	19.4	3.18	7.41	46.1	0.0502	1.17	92	3.82	NA
1	0.7	18	3	7	50	0.0302	1	110	5	0.1
2	0.866	18.3	3.05	7.56	51.1	NT	1.09	95.3	NT	0.12
3	NT	6.28	3.67	6.36	51.53	<1	NT	92	NT	0.27
4	NR	14.7	2.92	7.10	49.6	0.099	NR	102	NR	0.107
5	0.76	17	3.3	6.9	43	0.06	1.0	92	5	0.11
6	0.82	19.0	3.45	8.05	55.6	0.04	1.00	97.9	NR	0.08
7	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
8	0.675	19.5	3.25	7.47	49.7	0.047	1.20	NR	3.79	0.22
9	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
10	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
11	0.798	18.6	3.26	7.49	50	NR	1.04	93.4	NR	0.109
12	0.693	18.31	3.15	7.29	44.94	0.139	1.04	93.3	4.82	0.097
13	0.79	18	3.5	7.5	41	0.04	1	97	5	0.1
14	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
15	NR	18.3	3.1	7.2	47.6	0.045	1.1	93.7	3.9	<0.15
16	0.739	16	3	8	55	<0.2	1	94	NT	0.2
17	0.86	13	3.7	6.5	49	0.042	0.84	77	4.2	0.07
18	0.832	19.2	3.04	7.02	49.2	0.046	1.1	92	4.6	0.1
19	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
20	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
21	0.854	17.4	3.29	7.35	48.4	0.0494	NT	93.9	4.11	0.125
22	0.90	18.1	3.21	7.69	52.1	0.046	1.0	97.8	3.9	0.099
23	NR	NR	NR	NR	NR	0.042	NR	NR	NR	NR

Table 46 Summary of Participants' Results and Performance for Samples S3 and S4

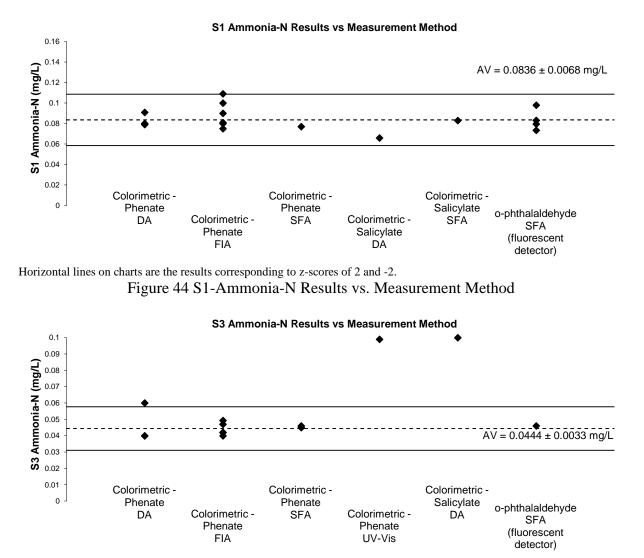
Shaded cells are results which returned a questionable or unacceptable z-score. AV = Assigned Value, HV = Homogeneity Value, NT = Not Tested, SV = Spike Value, NR = Not Reported, NA = Not Available

Lab	S3-Nitrate-N	S3-Nitrite-N	S3-Orthophosphate-P	S3-Sulphate	S3-TDN	S3-TDP	S4-TKN	S4-TN	S4-TOC
Code	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
AV	0.0419	Not Set	0.0444	14.7	0.218	0.0488	0.391	0.398	5.66
HV	0.0397	NA	0.0503	15.3	0.207	0.0568	0.458	0.468	5.23
1	0.05	< 0.005	0.041	16	< 0.1	0.051	0.4	0.4	5.9
2	NT	NT	0.037	15.6	NT	NT	NT	NT	NT
3	0.2	0.003	0.06	10.5	NT	0.60	NT	NT	NT
4	0.034	< 0.01	0.058	13.0	NR	NR	NT	NT	NT
5	0.050	< 0.005	0.089	16	0.17	0.05	0.3	0.3	6
6	0.04	0.001	0.038	15.4	0.21	0.045	0.40	0.41	NR
7	NT	NT	NT	NT	NT	NT	NT	NT	NT
8	0.049	< 0.005	0.043	NR	0.206	0.047	0.375	0.390	5.17
9	NT	NT	NT	NT	NT	NT	0.355	0.370	5.9
10	NT	NT	NT	NT	NT	NT	NT	NT	NT
11	0.0407	< 0.01	0.0388	20.2	NR	NR	NR	NR	NR
12	0.04	NR	0.037	14.91	0.189	0.053	0.4	0.37	8.36
13	0.04	< 0.005	0.058	13	<0.1	0.05	0.4	0.4	6
14	NT	NT	NT	NT	NT	NT	NT	NT	NT
15	0.082	0.016	0.044	13.5	0.29	0.052	0.39	0.42	5.1
16	0.03	NT	NT	15	NT	NT	NT	0.7	NT
17	0.033	0.007	0.043	13	0.26	0.043	0.41	0.42	5.6
18	0.038	< 0.005	0.051	13	0.25	0.053	0.43	0.44	5.5
19	NT	NT	NT	NT	NT	NT	NT	NT	NT
20	NT	NT	NT	NT	NT	NT	NT	NT	NT
21	0.0433	< 0.002	0.0378	16.3	0.214	0.0465	NT	0.401	5.28
22	0.048	< 0.010	0.036	16.1	0.21	0.046	0.39	0.41	5.5
23	0.050	< 0.002	NR	NR	0.2	0.049	NR	0.39	NR

Table 46 Summary of Participants' Results and Performance for Samples S3 and S4 (continued)

Shaded cells are results which returned a questionable or unacceptable z-score. AV = Assigned Value, HV = Homogeneity Value, NT = Not Tested, SV = Spike Value, NR = Not Reported, NA = Not Available

6.5 Participants' Results and Analytical Methods


Samples S1 and S2 were sea water samples while Samples S3 and S4 were river water samples. Participants were asked to analyse the samples using their normal test method. The measurement methods and instrumental techniques used are presented in Appendices 6 to 9. Overall, the between-laboratory CVs of the sea water samples and river water samples were comparable.

Low level nitrite-N in S3 was the test that most challenged participants' analytical techniques. Only four laboratories reported results.

Low level silica in S2 and low-level orthophosphate-P in S3 also challenged participants' analytical techniques. Of 23 participants, only 15 reported results for these tests. Of the 15 results reported for silica in S2 and orthophosphate-P in S3, 5 and 4 respectively returned unsatisfactory z-scores.

Individual Test Commentary

Alkalinity to pH 4.5 as (CaCO₃) Participants used auto-titration or manual titration to measure alkalinity in S2, and all performed satisfactorily.

Laboratory 12's result of 0.139 mg/L has been plotted as 0.1 mg/L Horizontal lines on charts are the results corresponding to z-scores of 2 and -2.

Figure 45 S3-Ammonia-N Results vs. Measurement Method

Ammonia-Nitrogen level in the sea water sample S1 was 0.0836 mg/L and in the river water sample S3 was half that, at 0.0444 mg/L. Participants' performance in the two types of water samples was similar.

Plots of participants' results in sea water and river water versus methods used for ammonia–N measurements are presented in Figures 44 and 45. Most participants used the colorimetric-phenate method with FIA determination.

Bromide Results produced using the ICP-MS were higher than those from IC measurements (Figure 46).

During ozonation or chlorination, the by-product bromate is formed in water containing bromide. Caution should be exercised when bromide is measured by ICP-MS because it measures both bromide and bromate as bromine. However, there are some technical difficulties when bromine is measure by ICP-MS, because it has only two isotopes, ⁸¹Br and ⁷⁹Br that typically suffer significant interferences from ⁴⁰Ar⁴⁰Ar⁺ dimer.

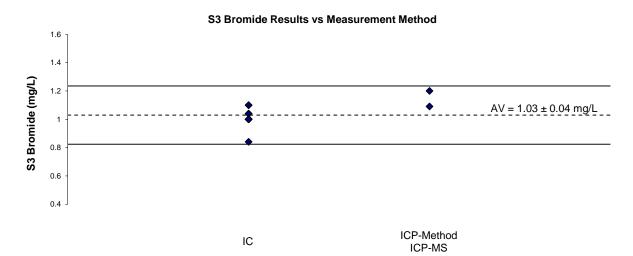
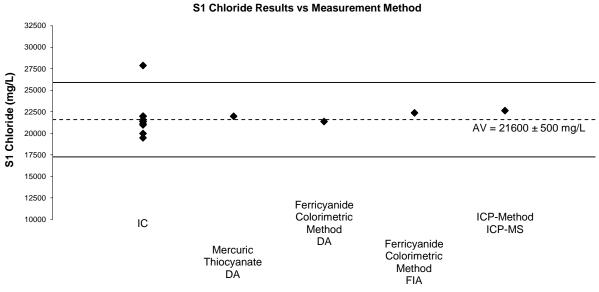
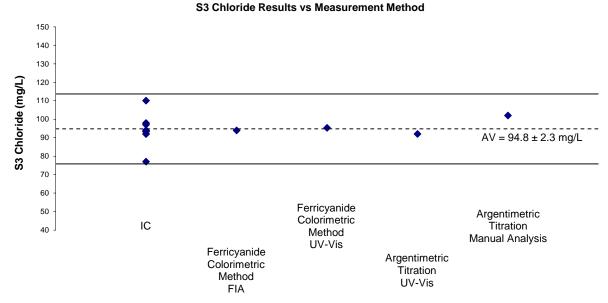
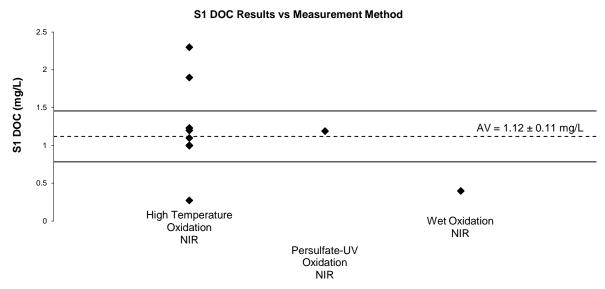




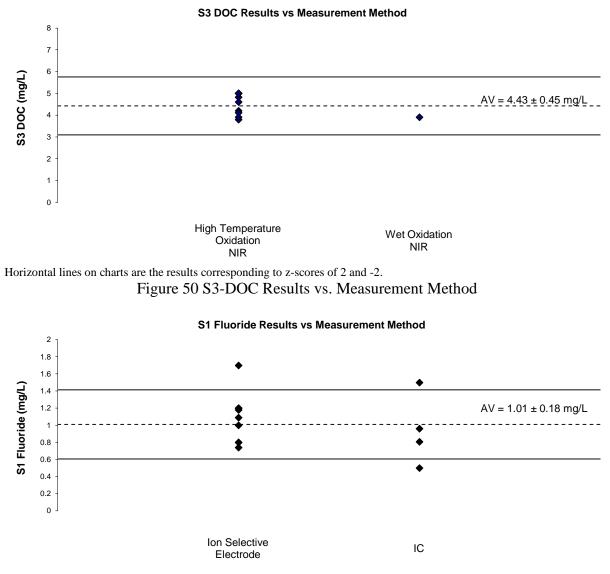
Figure 46 S3-Bromide Results vs. Measurement Method

Horizontal lines on charts are the results corresponding to z-scores of 2 and -2. Figure 47 S1-Chloride Results vs. Measurement Method

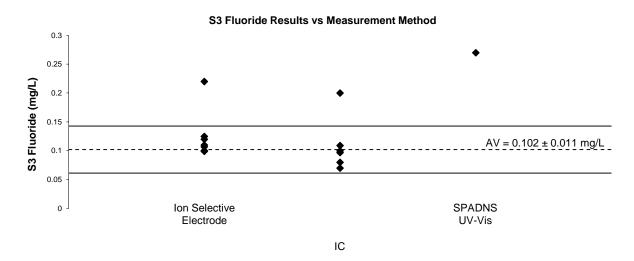
Horizontal lines on charts are the results corresponding to z-scores of 2 and -2.


Figure 48 S3-Chloride Results vs. Measurement Method

Chloride level in the sea water sample S1 was 21600 mg/L and in S3 was 94.8 mg/L. All the chloride results reported in river water and in sea water returned acceptable results except for one (Figures 47 and 48).

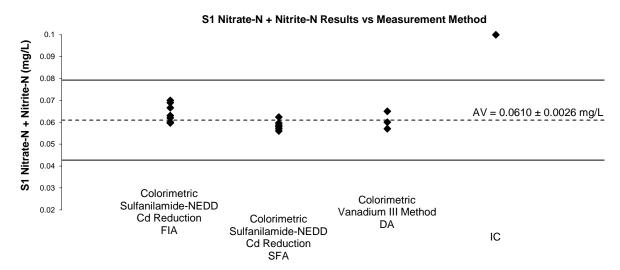

Dissolved Organic Carbon as dNPOC

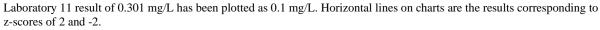
While all the results reported for DOC in Sample S3 river water returned acceptable z- scores, 4 of the 11 reported results in Sample S1 sea water returned unacceptable z-scores (Figures 49 and 50).


Chloride in sea water can interfere in the persulfate oxidation process of the organic molecules. Sample dilution and increased digestion time can help to overcome this problem.¹⁵

Horizontal lines on charts are the results corresponding to z-scores of 2 and -2. Figure 49 S1-DOC Results vs. Measurement Method

Horizontal lines on charts are the results corresponding to z-scores of 2 and -2. Figure 51 S1-Fluoride Results vs. Measurement Method

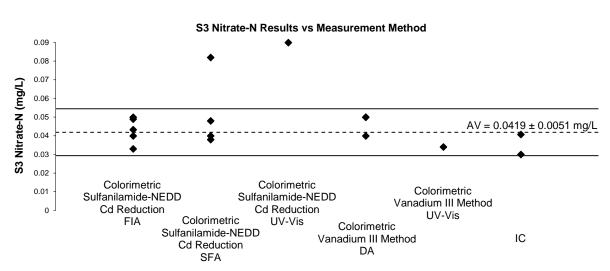


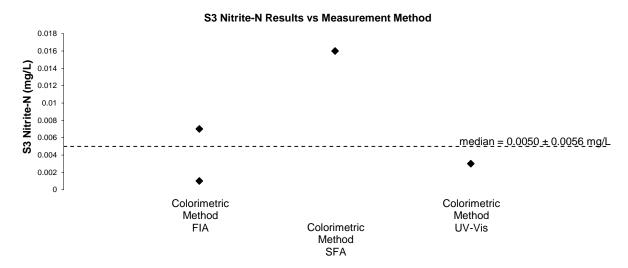

Horizontal lines on charts are the results corresponding to z-scores of 2 and -2. Figure 52 S3-Fluoride Results vs. Measurement Method **EC** results in sample S2 were in good agreement with each other with only one laboratory not receiving an acceptable z-score. The between-laboratory CV was 6.1%.

Fluoride Plots of participants z-scores versus the measurement technique used are presented in Figures 51 and 52.

Caution should be exercised when the ion chromatographic method is used for low level fluoride measurements. Fluoride has a low molecular weight and valence charge and is not retained by the columns in the normal elution times like for the other ions. Low level fluoride may be difficult to quantify due to negative contribution of the "water dip" (corresponding to elution of water) or due to interference from the simple organic acids which may elute close to fluoride.¹⁵

Nitrate-Nitrogen + Nitrite-Nitrogen level in the sea water sample S1 was 0.0610 mg/L. Seventeen laboratories reported results and all performed acceptably, but one. Most laboratories used the colorimetric-sulfanilamide-NEDD Cd reduction method with either FIA or SFA (Figure 53).




Figure 53 S1-Nitrate-N+Nitrite-N Results vs. Measurement Method

Laboratory 3 result of 0.2 mg/L was plotted as 0.09 mg/L. Horizontal lines on charts are the results corresponding to z-scores of 2 and -2.

Nitrate-N and Nitrite-N level in S3 was the incurred level. The assigned value for NO₃-N was 0.0419 mg/L. Sixteen participants reported results for NO₃-N in S3 and all performed acceptably but two. Most participants reported using a sulfanilamide-NEDD Cd reduction to convert NO₃-N to NO₂-N and measuring NO₂-N by FIA, SFA or UV-Vis (Figure 54).

Nitrite-N level in S3 was below the level of reporting of many participants. Four laboratories reported results for this test, with results varying from 0.001 mg/L to 0.016 mg/L (Figure 55).

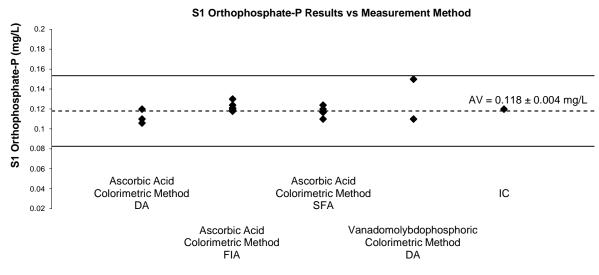
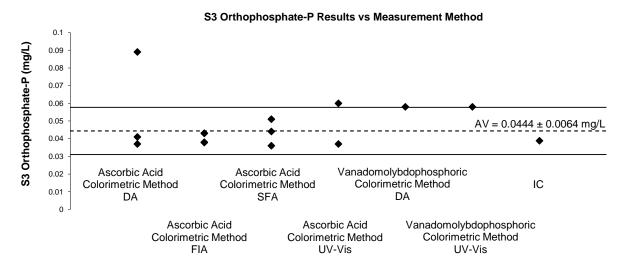
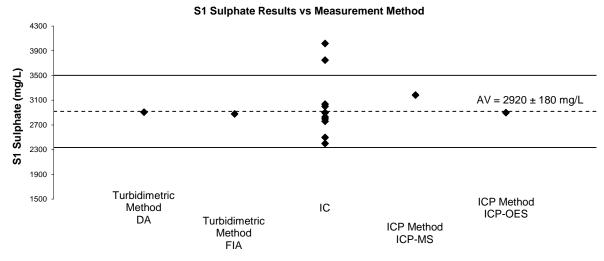

Horizontal lines on charts are the results corresponding to z-scores of 2 and -2.

Figure 55 S3- Nitrite-N Results vs. Measurement Method

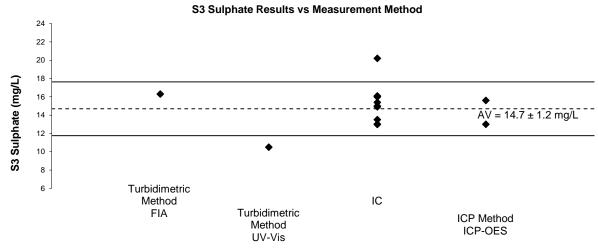

Orthophosphate-P level in the sea water sample S1 was 0.118 mg/L and in the river water sample S3 was 0.0444 mg/L.

All results reported for orthophosphate-P in S1 returned acceptable z-scores. The river water was more challenging with only 11 out of 15 participants reporting acceptable results.

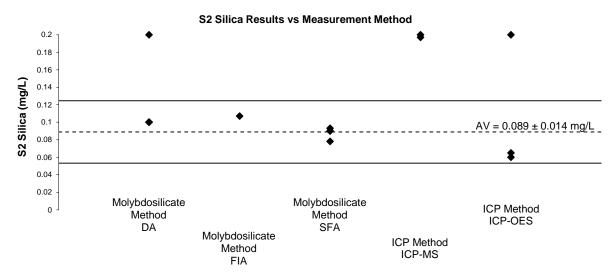
Ascorbic acid colorimetric method with FIA was the preferred method of measurement (Figures 56 and 57).

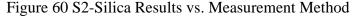


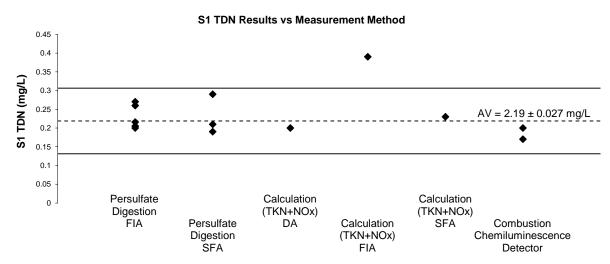
Horizontal lines on charts are the results corresponding to z-scores of 2 and -2. Figure 56 S1-Orthophosphate-P Results vs. Measurement Method


Horizontal lines on charts are the results corresponding to z-scores of 2 and -2.

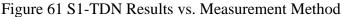
Horizontal lines on charts are the results corresponding to z-scores of 2 and -2.

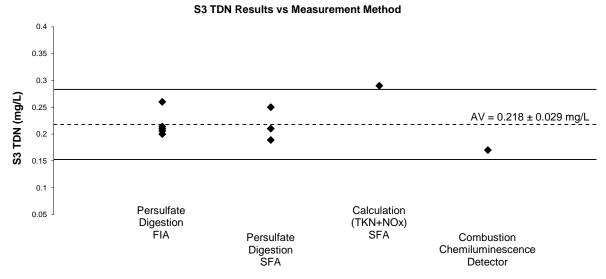



Horizontal lines on charts are the results corresponding to z-scores of 2 and -2 Figure 59 S3-Sulphate Results vs. Measurement Method **Sulphate** Of 15 participants who reported results for sulphate in S1 and S3, 13 performed acceptably in both samples. Laboratories used various methods, and most produced similar results (Figures 58 and 59). Laboratory 11 should check for method bias, as both of their results reported for sulphate in S1 and S3 were higher than assigned value by exactly the same factor, of 1.37.


Silica (as SiO₂) The silica level in seawater sample S1 was low (0.089 mg/L), and this may have posed challenges for some participants' analytical techniques. Most of the unsatisfactory results were produced by an ICP method (Figure 60). Seawater contains high concentrations of dissolved salts, which can cause signal suppression in ICP-MS or ICP-OES analysis. To mitigate this, significant dilution (up to 10 times) is required. However, this can also reduce the silica concentration in the sample to a level that can fall outside the optimal calibration range for these techniques.

The high silica results from ICP determination may be also of indication of measuring total silicon instead of reactive silica- silica species that react with molybdate.




Laboratory 6 result of 0.64 mg/L, Laboratory 8 result of 13 mg/L, Laboratory 12 result of 0.296 mg/L, and Laboratory 18 result of 0.321 mg/L were plotted as 0.2 mg/L or 0.1497 mg/L. Horizontal lines on charts are the results corresponding to z-scores of 2 and -2.

Horizontal lines on charts are the results corresponding to z-scores of 2 and -2.

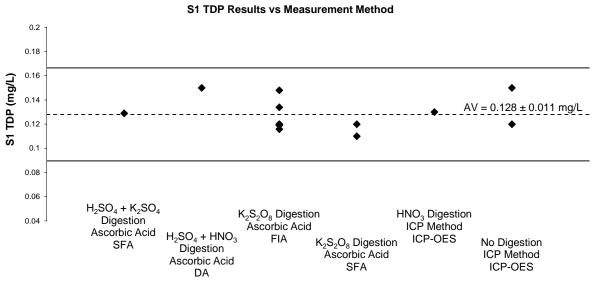
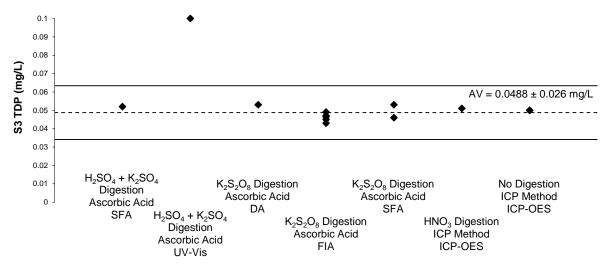

Horizontal lines on charts are the results corresponding to z-scores of 2 and -2.

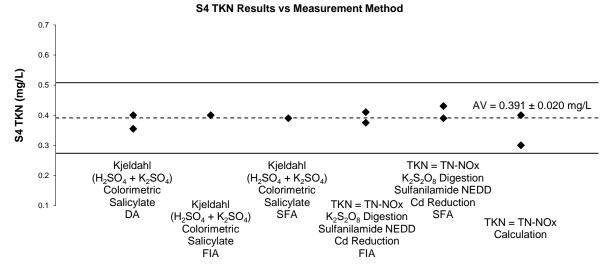
Figure 62 S3-TDN Results vs. Measurement Method

Total Dissolved Nitrogen level in S1 and S3 was similar at 0.219 mg/L and 0.218 mg/L respectively. Participants used the same method for TDN measurements in the two study samples; these are presented in Figures 61 and 62.


Two laboratories reported a result for TDN in S3 as being less than their level of reporting (0.1 mg/L). They may need to review their method and LOR for TDN measurements in the river water samples.

Total Dissolved Phosphorus in the sea water Sample S1 was 0.128 mg/L whilst in the river water sample S3, 0.0488 mg/L. All reported results returned acceptable z-scores with the exception of one. The most popular method used involved potassium persulphate digestion followed by FIA determination (Figures 63 and 64).

Horizontal lines on charts are the results correspond to z-scores of 2 and -2. Figure 63 S1-TDP Results vs. Measurement Method



Horizontal lines on charts are the results correspond to z-scores of 2 and -2. Figure 64 S3-TDP Results vs. Measurement Method

Total Kjeldahl Nitrogen measurements in the river water sample S4 did not challenge participants' analytical techniques. The between-laboratory CV was 6.7%.

Plots of participants' results versus the measurement method used are presented in Figure 65.

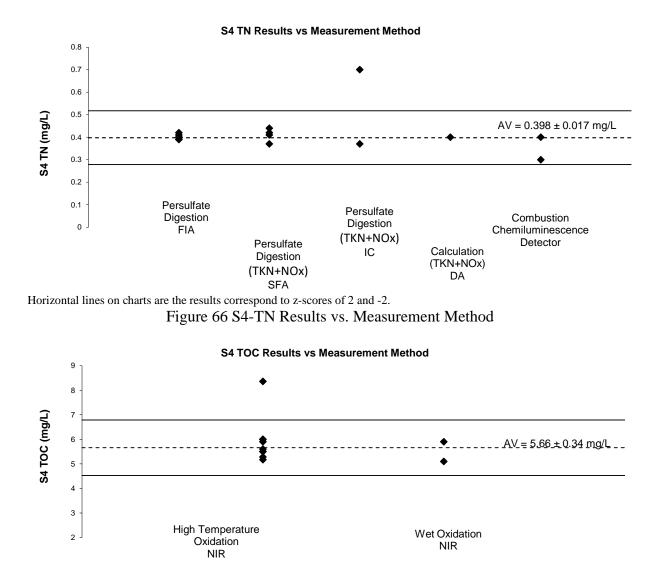
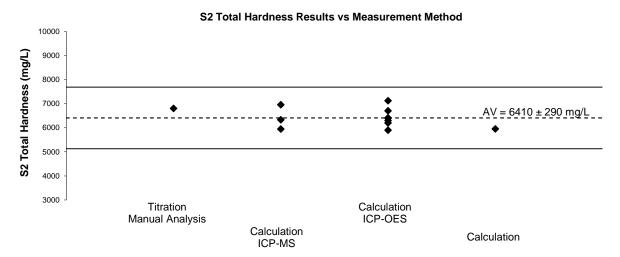
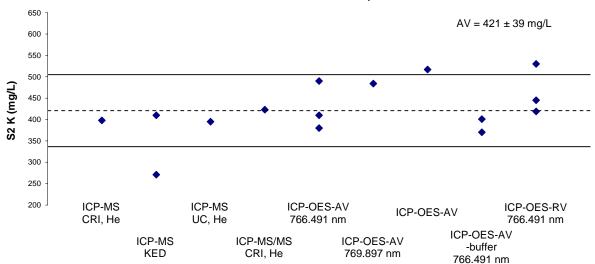

Horizontal lines on charts are the results correspond to z-scores of 2 and -2.

Figure 65 S4-TKN Results vs. Measurement Method

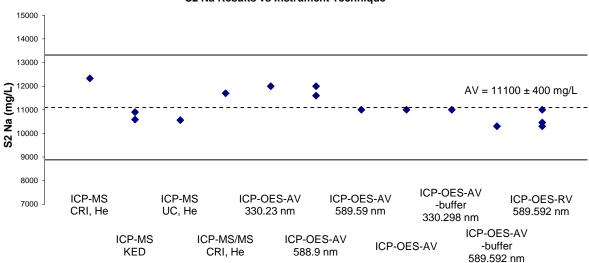

Total Nitrogen Fourteen laboratories reported results for TN in S4, and all but one returned acceptable z-scores.

Plots of participants' results versus the instrumental technique used are presented in Figure 66. The most popular method was persulfate digestion with FIA determination

Total Organic Carbon. Participants performed well for TOC measurements in S4, with a robust between laboratory CV of 7.9%. All but one participant reported acceptable results (Figure 67).


Horizontal lines on charts are the results correspond to z-scores of 2 and -2. Figure 67 S4-TOC Results vs. Measurement Method

Horizontal lines on charts are the results correspond to z-scores of 2 and -2 Figure 68 S2-Total Hardness Results vs. Measurement Method **Total Hardness** All reported results for total hardness in S2 returned acceptable results. ICP-OES was the preferred measurement technique (Figure 68).


Potassium and Sodium Participants used various instrumental techniques for K and Na measurement in S2 (Figures 69 and 70). All results returned acceptable z-scores except for three K results (Figures 69 and 70).

ICP-OES was the preferred instrumental technique. Potassium emission signals are significantly enhanced in the presence of other easily ionised elements such as: Na, Al and Mg. Concentrations much higher than the true values are frequently obtained for K when measurements are made by ICP-OES with axial view plasma (ICP-OES-AV) without an ionisation buffer or correction equation.¹⁶

S2 K Results vs Instrument Technique

Horizontal lines on charts are the results correspond to z-scores of 2 and -2. Figure 69 S2-K Results vs. Instrument Technique

S2 Na Results vs Instrument Technique

Horizontal lines on charts are the results correspond to z-scores of 2 and -2.

Figure 70 S2-Na Results vs. Instrument Technique

6.6 Comparison with Previous NMI Proficiency Tests of Water Characteristics

AQA 24-18 is the 19th NMI proficiency test of water characteristics. Figure 71 presents participant performance over time. Despite different matrices and analytes' concentrations, on average, participant performance has remained consistent over time, with an average acceptable z-score rate of 92%, and an average acceptable En-score rate of 83%.

Over time laboratories should expect at least 95% of their scores to lay within the range $|z| \le 2.0$. Scores in the range 2.0 < |z| < 3.0 occasionally can occur, however these should be interpreted in conjunction with the other scores obtained by that laboratory. For example, a trend of z-scores on one side of the zero line is an indication of method or laboratory bias.

Individual performance history reports are emailed to each participant at the end of the study; the consideration of z-scores for an analyte over time provides much more useful information than a single z-score.

6.7 Reference Materials and Certified Reference Materials

Participants reported whether control samples (spiked samples, certified reference materials-CRMs or matrix specific reference materials-RMs) had been used (Table 47).

Lab. Code	Description of Control Samples
1	SS
2	CRM – GWS-6 (in-house reference standard), CRM-TMDW
3	RM
5	SS
6	CRM – Ammonium: ICNNH41, LOT: U2-NH736769. Nitrate: ICNNO31, LOT: T2-NOX72937. Nitrite: ICNNO21, LOT T2-NOX721185. Phosphorus: CGP1, LOT: U2-P728267
7	CRM – KANSO Certified Reference Material lot CR (low range) was used for all samples while lot CP (medium range) was also used for silicate and phosphate. Bulk internal QC samples were also used for all samples.
8	CRM – CWW-TM-A, B and C (metals) Minerals 1 and 2 (salts)
9	RM
10	CRM – KANSO Certified Reference Material lot CR (low range) was used for all samples while lot CP (medium range) was also used for silicate and phosphate. Bulk internal QC samples were also used for all samples.
12	CRM, SS
13	SS
15	RM, CRM
16	CRM – WQC-ALK (HPS CRM) FOR ALKALINITY, NSI STANDARD FOR AMMONIA, PH EC ACCUSPEC CRM
17	CRM, SS
18	CRM, SS
19	CRM – KANSO Certified Reference Material lot CR (low range) was used for all samples. Bulk internal QC samples were also used for all samples.
20	CRM – Inorganic Venture-QCP MIN and Sulfur Standard, SS
21	SS
22	CRM, SS
23	RM – AQA 21-10 s2, AQA24-08 s1, AQA 22-11 S1, AQA 21-19 S2, AQA 22-18 S1

Table 47 Control Samples Used by Participants

Matrix matched control samples taken through all steps of the analytical process, are most valuable quality control tools for assessing the methods' performance.

Some laboratories reported using certified reference materials. These materials may not meet the internationally recognised definition of a Certified Reference Material:

'a reference material, accompanied by documentation issued by an authoritative body and providing one or more specified property values with associated uncertainties and traceabilities, using valid procedures'¹⁷

Acceptable z-Scores and En-Scores

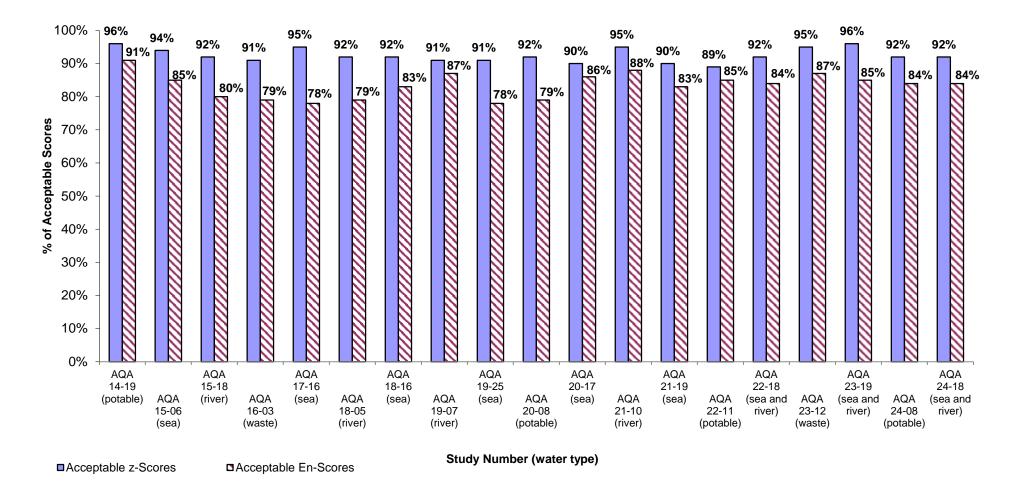


Figure 71 Participant Performance in Nutrients, Anions and Physical Tests in Water PT Studies over Time

7 REFERENCES

Note: For all undated references, the latest edition of the referenced document (including any amendments) applies.

[1] ISO17043, Conformity assessment – General requirements for proficiency testing.

[2] NMI, *Study Protocol for Proficiency Testing*, viewed February 2025, https://www.industry.gov.au/sites/default/files/2020-10/cpt_study_protocol.pdf >.

[3] NMI, *Chemical Proficiency Testing Statistical Manual*, viewed February 2025, https://www.industry.gov.au/sites/default/files/2019-07/cpt_statistical_manual.pdf>.

[4] Thompson, M, Ellison, S & Wood, R 2006, 'The international harmonized protocol for proficiency testing of (chemical) analytical laboratories', *Pure Appl. Chem*, vol 78, pp 145-196.

[5] National Environmental Protection Council, Schedule B1 Guidelines on the Investigation Levels for Soil and Groundwater, viewed February 2025, ">https://www.legislation.gov.au/Details/F2013C00288/Html/Volume_2>.

[6] ISO13528, Statistical methods for use in proficiency testing by inter laboratory comparisons.

[7] Thompson, M, 2000, 'Recent trends in inter-laboratory precision at ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing', *Analyst*, vol 125, pp 385-386.

[8] AS ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories

[9] Eurachem/CITAC Guide CG4, QUAM 2012, *Quantifying Uncertainty in Analytical Measurement*, 3rd ed., viewed February 2025,

<http://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf>.

[10] Bertil, M, 2004, Nordtest Report Handbook for Calculation of Measurement Uncertainty in Environmental Laboratories TR 537, 4th Edition, Nordest Tekniikantie, Finland, Esopo.

[11] Hibbert, B 2007, *Quality Assurance for the Analytical Chemistry Laboratory*, Oxford University Press.

[12] ISO (2008), *Guide to the Expression of Uncertainty in Measurement (GUM)*, Geneva, Switzerland.

[13] Eurolab 2002, Technical Report No 1/2002 - Measurement Uncertainty in Testing.

[14] NMI, *Estimating Measurement Uncertainty for Chemists* – viewed, <<u>https://www.industry.gov.au/client-services/training-and-assessment></u>.

[15] American Public Health Association, American Water Works Association, & Water Environmet Federation, *Standard Methods for the Examination of Water and Wastewater*, 24th edition

[16] Dubuisson, C. Poussel, E. (1997), Comparison of axially viewed and radially viewed inductively coupled plasma atomic emission spectrometry in terms of signal-to background ratio and matrix effects Journal of Analytical Atomic Spectrometry 12, 281-286.

[17] JCGM 200:2012, International vocabulary of metrology – Basic and General Concepts and Associated Terms (VIM), 3rd edition.

[18] National Measurement Institute, Method Number NT2.47: Determination of Total Acid Extractable Metals and Dissolved Elements in Water using Inductively Coupled Plasma Mass Spectrometry and Inductively Coupled Plasma Atomic Emission Spectrometry.

[19] NMI, AQA 21-19 Nutrients, Anions and Physical Tests in Sea Water, viewed February 2025, https://www.industry.gov.au/publications/proficiency-test-reports-2021.

APPENDIX 1 – SAMPLE PREPARATION, ANALYSIS AND HOMOGENEITY TESTING

Sample Preparation

Sample S1 was prepared from approximately 19 L of sea water fortified for four analytes of interest before being mixed thoroughly and dispensed into 200 mL portions each.

Sample S2 was prepared from approximately 20 L of unspiked sea water dispensed into 200 mL portions each.

Sample S3 was prepared from approximately 20 L of river water. The water was fortified for three analytes of interest, mixed thoroughly, and dispensed into 200 mL portions each.

Sample S4 was 10 L of river water fortified for one analyte of interest, mixed thoroughly before being dispensed in portions of 200 mL each.

Sample Analysis and Homogeneity Testing

Apart from alkalinity and silica in S2, and fluoride in S3 a partial homogeneity test was conducted for all other analytes of interest. Three bottles were analysed in duplicate, and the average of the results was reported as the homogeneity value.

Sample Analysis for Dissolved Elements

The analysis for partial homogeneity were conducted by the CRV section of NMI as per method NT2.47. ¹⁹ A test portion of 0.5 mL or 2.5 mL for S2, and 8 mL for S3 was diluted to 10 mL with 2% HNO₃. The measurement instrument was calibrated using external standards for targeted analytes. A set of quality control samples consisting of blanks, a blank matrix spike, duplicates, sample matrix spikes and control samples (AQA 23-19 S2 and AQA 23-19 S3) was carried through the same set of procedures and analysed simultaneously with the samples.

A summary of the wavelength and instrument conditions used for each analyte is presented in Table 48 for S2 and S3.

Analyte	Instrument	Internal Standard	Reaction/ Collision Cell	Cell Mode/Gas	Final Dilution Factor	Wavelength
S2-B	ICP-OES	Y	NA	NA	4	249.678 nm
S2-Ca	ICP-OES	Y	NA	NA	400	422.673 nm
S2-K	ICP-OES	Y	NA	NA	4	766.491 nm
S2-Mg	ICP-OES	Y	NA	NA	400	279.078 nm
S2-Na	ICP-OES	Y	NA	NA	400	588.995 nm
S3-B	ICP-OES	Y	NA	NA	1.25	249.678 nm
S3-Ca	ICP-OES	Y	NA	NA	1.25	422.673 nm
S3-K	ICP-OES	Y	NA	NA	1.25	766.491 nm
S3-Mg	ICP-OES	Y	NA	NA	1.25	279.078 nm
S3-Na	ICP-OES	Y	NA	NA	1.25	588.995 nm

Table 48 Methodology for Dissolved Elements

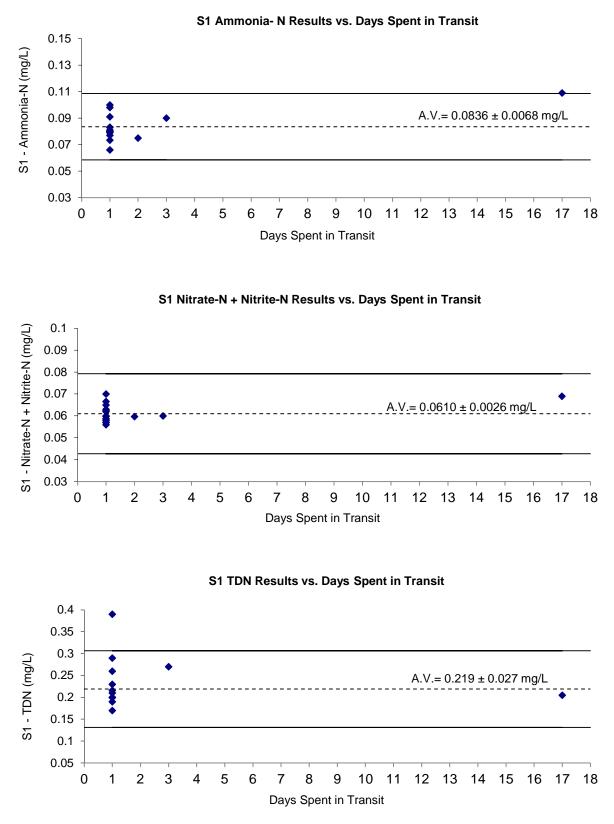
Methodology for Tests Other Than Dissolved Elements

Analyses for all the tests other than dissolved elements were conducted by NMI Inorganics section. A summary of the measurement methods and instrumental techniques is presented in Table 49.

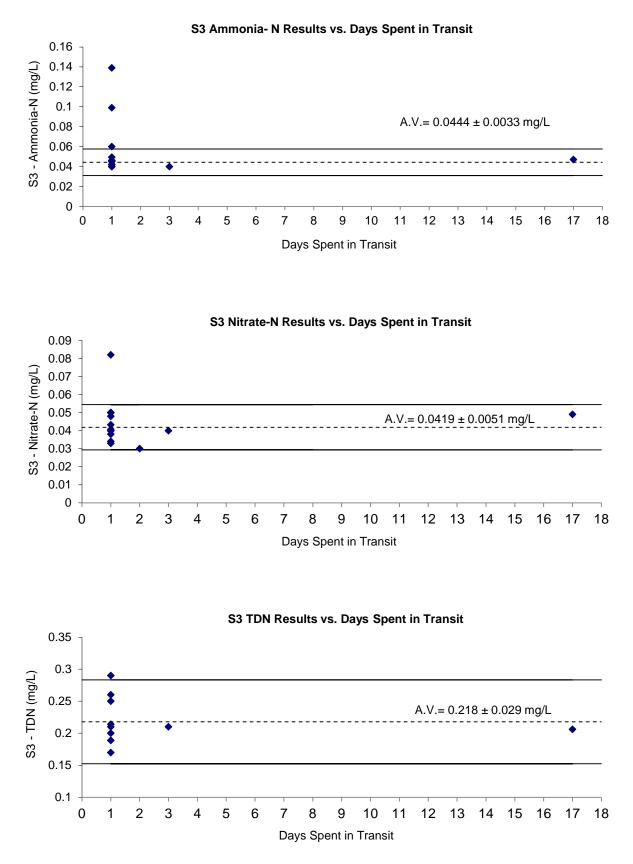
Test	Measurement Method	Instrument
Ammonia-N	Fluorometric Determination – OPA Method	SFA
Bromide	Ion Chromatographic Method	IC
Chloride	Ion Chromatographic Method	IC
Dissolved Organic Carbon	High-Temperature Oxidation	NIR-detector
Fluoride	Ion Chromatographic Method	IC
Nitrate-N	Colorimetric-Sulfanilamide-NEDD Cd reduction	SFA
Orthophosphate-P	Ascorbic Acid Colorimetric Method	DA
Sulphate	Ion Chromatographic Method	IC
Total Dissolved Nitrogen	Persulfate Digestion	SFA
Total Dissolved Phosphorus	K ₂ S ₂ O ₈ Digestion; Ascorbic Acid Colorimetric Method	SFA
Total Kjeldahl Nitrogen	TKN = TN-NOx (K2S2O8 Digestion)	SFA
Total Nitrogen	Persulfate Digestion	SFA
Total Organic Carbon	High Temperature Oxidation	NIR-detector

Table 49 Methodology for Tests Other Than Dissolved Elements

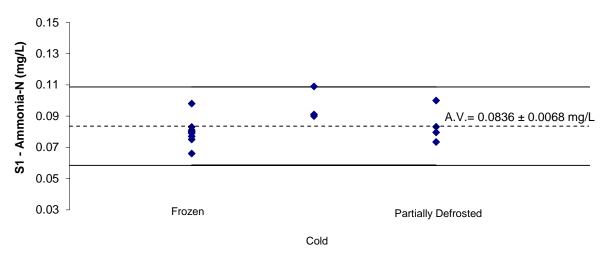
APPENDIX 2 - STABILITY STUDY

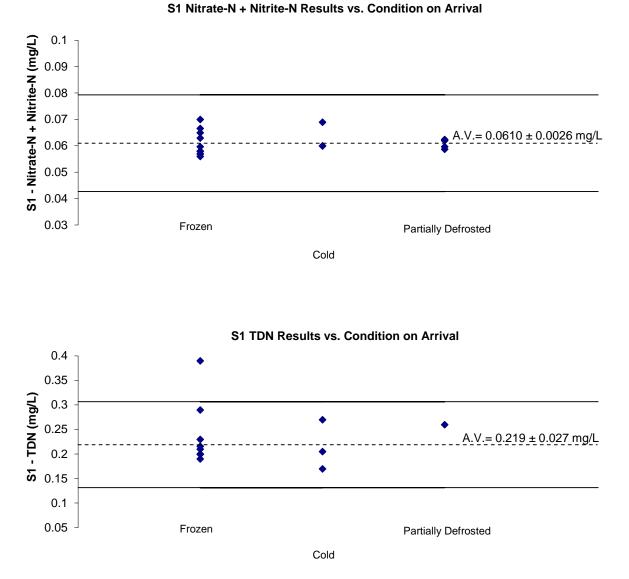

The tests samples were dispatched on 21 October 2024. Participants were advised to store the samples S1, S3 and S4 frozen, if unable to commence analysis on the day of receipt. Samples' condition on receipt and the date when the samples were received and analysed by participants are presented in Table 50.

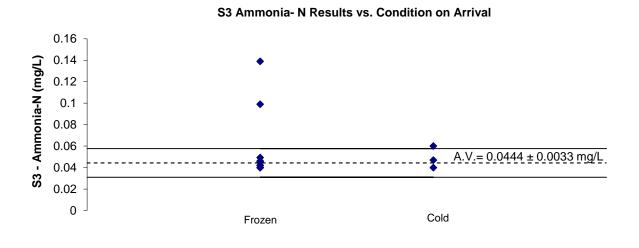
		S1		S	\$3		S4	
Lab Code	Received Date	Condition on Receipt	Date of Analysis	Condition on Receipt	Date of Analysis	Condition on Receipt	Date of Analysis	
1	22/10/2024	frozen	24/10/2024	frozen	24/10/2024	frozen	24/10/2024	
2	25/10/2024	NA	NA	frozen	04/11/2024	NA	NA	
3	29/10/2024	NA	NA	Chilled. Inner Ice packs not frozen but the box had been refrigerated before collection	14/11/2024	NA	NA	
4	22/10/2024	NA	NA	frozen	23/10/2024	NA	NA	
5	22/10/2024	cold	22/10/2024	cold	22/10/2024	cold	22/10/2024	
6	24/10/2024	Cold	25/10/2024	Cold	25/10/2024	Cold	25/10/2024	
7	22/10/2024	70% frozen	31/10/2024	NA	NA	NA	NA	
8	7/11/2024	cold	13/11/2024	cold	13/11/2024	cold	14/11/2024	
9	23/10/2024	frozen	25/10/2024	NA	NA	frozen	25/10/2024	
10	22/10/2024	70% frozen	07/11/2024	NA	NA	NA	NA	
11	22/10/2024	frozen	12/11/2024	frozen	12/11/2024	NR	NR	
12	22/10/2024	frozen	22/10/2024	frozen	22/10/2024	frozen	22/10/2024	
13	22/10/2024	frozen	24/10/2024	frozen	24/10/2024	frozen	24/10/2024	
14	22/10/2024	NA	NA	NA	NA	NA	NA	
15	22/10/2024	frozen	NR	frozen	NR	frozen	NR	
16	23/10/2024	frozen	24/10/2024	frozen	24/10/2024	frozen	24/10/2024	
17	22/10/2024	Partially defrosted	28/10/2024	frozen	28/10/2024	frozen	28/10/2024	
18	22/10/2024	frozen	23/10/2024	frozen	23/10/2024	frozen	23/10/2024	
19	22/10/2024	70% frozen	13/11/2024	NA	NA	NA	NA	
20	22/10/2024	frozen	24/10/2024	NA	NA	NA	NA	
21	22/10/2024	Frozen	NR	Frozen	NR	Frozen	NR	
22	22/10/2024	frozen	01/11/2024	frozen	01/11/2024	frozen	04/11/2024	
23	22/10/2024	frozen	29/10/2024	frozen	29/10/2024	frozen	29/10/2024	

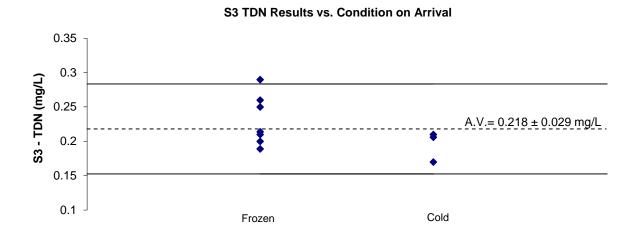

Table 50 Sample S1, S3 and S4 Condition on Receipt and the Date When the Sample was Received and Analysed

NA = Not Applicable, NR = Not Reported.


No relationship between participants' results reported for less stable analytes (ammonia-N, NOx-N, TDN), samples' condition on receipt or the number of days spent in transit, were evident (Figures 72 and 73).


Horizontal lines on charts are the results corresponding to z-scores of 2 and -2. Figure 72 Results vs Days Spent in Transit


Horizontal lines on charts are the results corresponding to z-scores of 2 and -2. Figure 72 Results vs Days Spent in Transit (continued)


S1 Ammonia- N Results vs. Condition on Arrival

Horizontal lines on charts are the results corresponding to z-scores of 2 and -2. Figure 73 Results vs Condition on Arrival

S3 Nitrate-N Results vs. Condition on Arrival 0.09 0.08 S3 - Nitrate-N (mg/L) 0.07 0.06 0.05 \$ A .V.= 0.0419 ± 0.0051 mg/L 0.04 0.03 0.02 0.01 0 Cold Frozen

Horizontal lines on charts are the results corresponding to z-scores of 2 and -2. Figure 73 Results vs Condition on Arrival (continued)

The same packing and dispatching procedure were followed in the present study as in PT study AQA 21-19. In this study one set of samples, sent overseas, spent eight days in transit. To assess analytes' stability during transport, results from the "transport set of samples" with eight days in transit (T8) were compared with results from a set of samples sent to the same laboratory but with only two days in transit (T2). The results from this study are presented in Figure 74. The two sets of results were in good agreement with each other within their stated uncertainties.¹⁹

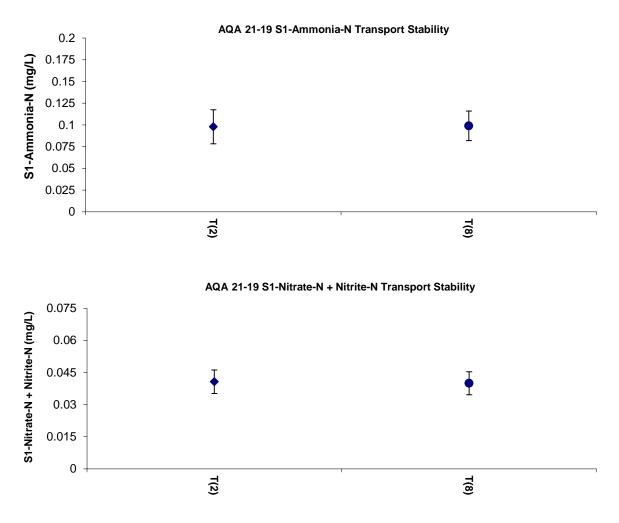


Figure 74 AQA 21-19 Transport Stability Results

Stability Study

In previous PT studies, stability studies conducted for nutrients and physical tests in water found no significant changes in any of the analytes' concentrations. However, a stability study was still conducted in the present study for the less stable analytes: ammonia-N, NOx-N in S1 and ammonia-N and NO₃-N in S3.

Two main factors were considered to affect the stability of these tests in water: storage condition and time.

To test for storage stability, the results from a sample stored at -20° C (reference samples) was compared with the results from one sample left out on a laboratory table for four days (room). These samples were analysed at the same time.

To check sample stability during the study conduct, a comparison was conducted of the results from samples analysed before the samples' dispatch (T0) versus those analysed at the

end of the study, after submission of results (T1). Each sample was analysed in duplicate together with a set of quality control samples consisting of blanks, blank matrix spikes, control samples, duplicates and sample matrix spikes.

Results from both studies were in good agreement with each other and the assigned value were within their stated uncertainties (Figure 75).

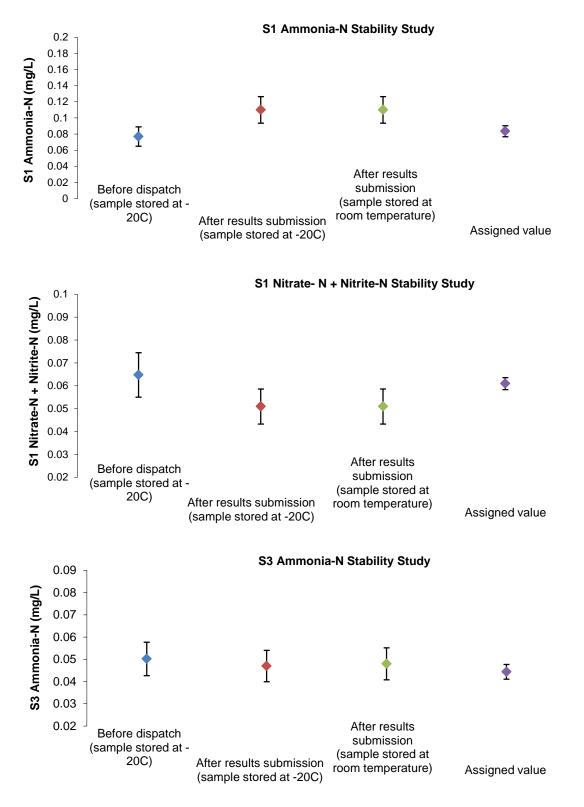


Figure 75 Stability Study Results



Figure 75 Stability Study Results (continued)

APPENDIX 3 – ASSIGNED VALUE, Z-SCORE AND E_N SCORE CALCULATION

The assigned value was calculated as the robust average using the procedure described in 'ISO13528:2015(E), Statistical methods for use in proficiency testing by inter-laboratory comparisons – Annex C'.⁶ The uncertainty was estimated as:

$$u_{rob av} = 1.25 * S_{rob av} / \sqrt{p}$$

Equation 4

where:

 $u_{rob av}$ robust average standard uncertainty $S_{rob av}$ robust average standard deviationpnumber of results

The expanded uncertainty $(U_{rob av})$ is the standard uncertainty multiplied by a coverage factor of 2 at approximately 95% confidence level.

A worked example is set out below in Table 51.

No. results (p)	16
Robust Average	3.23 mg/L
$S_{rob av}$	0.245 mg/L
<i>U</i> rob av	0.077 mg/L
k	2
$U_{rob\ av}$	0.15 mg/L

Table 51 Uncertainty of Assigned Value for K in Sample S3

The assigned value for **K** in Sample S3 is 3.23 ± 0.15 mg/L.

z-Score and E_n-score

For each participant's result a z-score and E_n -score are calculated according to Equation 2 and Equation 3 respectively (see page 9).

A worked example is set out below in Table 52.

Table 52 z-Score and En-score for the K result reported by Laboratory 21 in S3

Result mg/L	Assigned Value mg/L	Set Target Standard Deviation	z-Score	E _n -Score
3.29 ± 0.46	3.23 ± 0.15	10% as CV or 0.1 x 3.23 = = 0.323 mg/L	$z = \frac{(3.29 - 3.23)}{0.323}$ $z = 0.19$	$En = \frac{(3.29 - 3.23)}{\sqrt{0.46^2 + 0.15^2}}$ $E_n = 0.12$

APPENDIX 4 - USING PT DATA FOR UNCERTAINTY EVALUATION

When a laboratory has successfully participated in at least 6 proficiency testing studies, the standard deviation from proficiency testing studies can also be used to evaluate the uncertainty of their measurement results.^{10, 12} An example is given in Table 53. Between 2014 and 2024, NMI carried out 18 proficiency tests for nutrients, anions and physical tests in water. These studies involved measurements of these analytes in potable, fresh (river), waste and seawater.

Laboratory X participated and submitted acceptable results for all studies with chloride in these PTs. This data can usefully be separated into two ranges of results 0.5 to 1000 mg/L and greater than 1000 mg/L (Tables 53 and 54).

Study No.	Sample	Laboratory result	Assigned value	Number of	Robust CV of all
Stady 110.	Sumple	mg/L	mg/L	Results	results (%)
AQA 14-19	Potable	51.9 ± 10	55.4 ± 1.4	8	2.9
AQA 15-18	River	65.7 ± 10	70.3 ± 3.6	10	6.5
AQA 18-05	River	68 ± 8.0	71.3 ± 1.5	17	3.4
AQA 19-07	River	57.0 ± 12	53.7 ± 2.0	10	4.7
AQA 20-08	Potable	33.4 ± 7.0	41.6 ± 1.9	13	6.7
AQA 21-10	River	81 ± 10	86.3 ± 2.7	20	5.7
AQA 22-11	Potable	22.3 ± 5.0	25.5 ± 0.8	19	5.5
AQA 22-18	River	60 ± 10	62.3 ± 1.5	19	4.1
AQA 23-12	Waste	152 ± 20	142 ± 6	16	6.3
AQA 23-19	River	39.8 ± 4.5	39.8 ± 2.6	11	8.7
AQA 24-08	Potable	33.3 ± 5.0	28.9 ± 1.0	19	6.3
Average					5.5*
pooled s% = $\sqrt{\frac{(8-1) \times 2.9^2 + (10-1) \times 6.5^2 + \dots + (19-1) \times 6.3^2)}{162 - 11}}$					
					5.7
pooled s%	=	162 - 11			5.7
	N				

Table 53 Laboratory X Reported Results for Chloride at 0.5 to 1000 mg/L Level

* The pooled standard deviation was used.

Table 54 Laboratory X Reported Results for Chloride at >1000 mg/L Level

Study No.	Sample	Laboratory result mg/L	Assigned value mg/L	Number of Results	Robust CV of all results (%)
AQA 16-03	Waste	3099 ± 320	2990 ± 170	8	6.3
AQA 17-16	Sea	13100 ± 1300	12800 ± 420	10	4.1
AQA 18-16	Sea	16600 ± 1600	17300 ± 1600	13	13
AQA 19-25	Sea	20000 ± 2000	20500 ± 1000	13	2.2
AQA 20-17	Sea	9800 ± 980	10700 ± 400	10	4.9
AQA 21-19	Sea	19440 ± 1950	20100 ± 600	9	3.8
AQA 22-18	Sea	14073 ± 1400	13800 ± 500	14	5.3
AQA 23-19	Sea	17132 ± 1750	16800 ± 500	12	4.2
AQA 24-18	Sea	22659 ± 2270	21600 ± 500	15	3.9
Average					5.3*
pooled $s\% = \sqrt{\frac{(8-1) \times 6.3^2 + (10-1) \times 4.1^2 + \dots + (15-1) \times 3.9^2)}{104-9}}$					6.1

* The pooled standard deviation was used.

Taking the pooled standard deviation of these PT samples for each concentration range gives estimates of the relative standard uncertainty of 5.7% and 6.1% respectively. Using a

coverage factor of two gives a relative expanded uncertainty of 12% at 0.5 - 1000 mg/L level, and 13% at >1000 mg/L level, at a level of confidence of approximately 95%.

Table 55 sets out the expanded uncertainty for results of the measurement of Chloride in potable, fresh, waste or sea water over the range 0.5 - 30000 mg/L.

Results	Uncertainty
mg/L	mg/L
20.0	2.4
500	60
1000	130
7500	980
15000	2000
30000	3900

Table 55 Uncertainty of Chloride results estimated using PT data

The MU evaluation made using PT data is close to Laboratory X's uncertainty reported with their PT results. The evaluation of 12% and 13% passes the test of being reasonable, and the analysis of the four different matrices over eleven years can safely be assumed to include all the relevant uncertainty components (different operators, reagents, calibrants etc), and so complies with ISO 17025:2018.⁸

APPENDIX 5 - ACRONYMS AND ABBREVIATIONS

APHA	American Public Health Association
CITAC	Cooperation on International Traceability in Analytical Chemistry
CRI	Collision Reaction Interface
CRM	Certified Reference Material
CV	Coefficient of Variation
DA	Discreet Analyser
dNPOC	Dissolved non-purgeable organic carbon
FIA	Flow Injection Analyser
GUM	Guide to the Expression of Uncertainty in Measurement
HV	Homogeneity Value
IC	Ion Chromatograph
ICP	Inductively Coupled Plasma
ICP-MS	Inductively Coupled Plasma - Mass Spectrometry
ICP-MS/MS	Inductively Coupled Plasma - Tandem Mass Spectrometry
ICP-OES	Inductively Coupled Plasma - Optical Emission Spectrometry
ICP-OES-AV	Inductively Coupled Plasma - Optical Emission Spectrometry- axial view
ICP-OES-AV-buffer	Inductively Coupled Plasma - Optical Emission Spectrometry- axial view with buffer
ICP-OES-RV	Inductively Coupled Plasma - Optical Emission Spectrometry- radial view
Max	Maximum Value in a Set of Results
Md	Median
Min	Minimum Value in a Set of Results
MU	Measurement Uncertainty
NEDD	N-(1-naphthyl)-ethylenediamine dihydrochloride (NED dihydrochloride)
NEPM	National Environment Protection Measures
NIR	Near-infrared
NMI	National Measurement Institute (of Australia)
NOx	Nitrous Oxides
NR	Not Reported
NT	Not Tested
OPA	Orthophtaldialdehyde
ORS	Octopole Reaction System
PCV	Performance Coefficient of Variation
PT	Proficiency Test
RA	Robust Average
RM	Reference Material
Robust CV	Robust Coefficient of Variation
Robust SD	Robust Standard Deviation
SV	Spiked or Formulated Concentration of a PT Sample
SFA	Segment Flow Analyser
SI	The International System of Units
SPADNS	1,8-dihydroxy-2-(4-sulfophenylazo)naphthalene-3,6-disulfonic acid
SS	Spiked Samples
sa/\sigma	Analytical Standard Deviation Divided by the Target Standard Deviation
Target SD	Target Standard Deviation

σ	Target Standard Deviation
TKN	Total Kjeldahl Nitrogen
UC	Universal Cell
USEPA	United Stated Environmental Protection Agency
UV-Vis	Ultraviolet and Visible Spectroscopy

APPENDIX 6 - METHODOLOGY FOR S1

Lab. Code	Measurement Method	Instrument	Method Reference	
1	Colorimetric - Phenate Method	DA	APHA	
5	Colorimetric - Phenate Method	DA	APHA	
6	Colorimetric - Phenate Method	FIA	APHA	
7	Fluorometric Determination - OPA Method	SFA	Roger Kérouel and Alain Aminot, IFREMER (1997 Mar.Chem.57)	
8	Colorimetric - Phenate Method	FIA		
9	Colorimetric - Phenate Method	FIA	APHA4500-NH3	
10	Fluorometric Determination - OPA Method	SFA	Roger Kérouel and Alain Aminot, IFREMER (1997 Mar.Chem.57)	
13	Colorimetric - Phenate Method	DA		
15	Colorimetric - Salicylate Method	SFA	In house	
16	Ion Selective Electrode Method	Ion Selective Electrode	APHA 4500	
17	Colorimetric - Phenate Method	FIA	Lachat QuikChem	
18	Fluorometric Determination - OPA Method	SFA	SFA	
19	Fluorometric Determination - OPA Method	SFA	Roger Kérouel and Alain Aminot, IFREMER (1997 Mar.Chem.57)	
20	Colorimetric - Salicylate Method	DA	APHA4500NH3	
21	Colorimetric - Phenate Method	FIA	Inhouse	
22	Colorimetric - Phenate Method	SFA	АРНА	
23	Colorimetric - Phenate Method	FIA	АРНА	

Table 56 Measurement Methods and Instrument Techniques for Ammonia-N

Table 57 Measurement Methods and Instrument Techniques for Chloride

Lab. Code	Measurement Method	Instrument	Method Reference
1	Ion Chromatographic Method	IC	АРНА
5	Ion Chromatographic Method	IC	АРНА
6	Ion Chromatographic Method	IC	Inhouse
8	ICP-Method	ICP-MS	In house
9	Ion Chromatographic Method	IC	APHA4110B(modified)
11	Ion Chromatographic Method	IC	
12	Ion Chromatographic Method	IC	
13	Ion Chromatographic Method	IC	
15	Ion Chromatographic Method	IC	In house
16	Ion Chromatographic Method	IC	APHA 411 B
17	Ion Chromatographic Method	IC	АРНА
18	Ion Chromatographic Method	IC	АРНА
20	Mercuric Thiocyanate	DA	APHA4500Cl-
21	Ferricyanide Colorimetric Method	FIA	Inhouse
22	Ferricyanide Colorimetric Method	DA	АРНА

Lab. Code	Measurement Method	Instrument	Method Reference
1	High-Temperature Oxidation	NIR-detector	АРНА
5	High-Temperature Oxidation	NIR-detector	АРНА
8	High-Temperature Oxidation	Shimadzu TOC-L	
9	Persulfate-Ultraviolet Oxidation	NIR-detector	APHA5310C(modified)
12	High-Temperature Oxidation	NIR-detector	
13	High-Temperature Oxidation	NIR-detector	
15	Wet-Oxidation	NIR-detector	In house
17	High-Temperature Oxidation	NIR-detector	АРНА
18	High-Temperature Oxidation	NIR-detector	АРНА
20	High-Temperature Oxidation	NIR-detector	APHA5310B
21	High-Temperature Oxidation	NIR-detector	Inhouse
22	High-Temperature Oxidation	NIR-detector	АРНА

Table 58 Measurement Methods and Instrument Techniques for Dissolved Organic Carbon

Table 59 Measurement Methods and Instrument Techniques for Fluoride

Lab. Code	Measurement Method Instrument		Method Reference	
1	Ion Selective Electrode Method	Ion Selective Electrode	APHA	
5	Ion Selective Electrode Method	Ion Selective Electrode	АРНА	
6	Ion Chromatographic Method	IC	Inhouse	
8	Ion Selective Electrode Method	Ion Selective Electrode		
9	Ion Selective Electrode Method	Ion Selective Electrode	APHA4500-F-C	
11	Ion Chromatographic Method	Ion Chromatographic Method		
12	Ion Chromatographic Method	IC		
13	Ion Selective Electrode Method	Ion Selective Electrode		
15	Ion Chromatographic Method	IC	In house	
16	Ion Chromatographic Method	IC	APHA 411 B	
17	Ion Chromatographic Method	IC	APHA	
18	Ion Selective Electrode Method	Ion Selective Electrode	APHA	
20	Ion Selective Electrode Method	Ion Selective Electrode	APHA4500F	
21	Ion Selective Electrode Method	Ion Selective Electrode	Inhouse	
22	Ion Selective Electrode Method	Auto Titration	APHA	

Lab. Code	Measurement Method	Instrument	Method Reference
1	Colorimetric -vanadium III method	DA	АРНА
5	Colorimetric -vanadium III method	DA	АРНА
6	Colorimetric-Sulfanilamide-NEDD Cd reduction	FIA	АРНА
7	Colorimetric-Sulfanilamide-NEDD Cd reduction	SFA	Rees, C., L. Pender, K. Sherrin, C. Schwanger, P. Hughes, S. Tibben, A. Marouchos, and M. Rayner. (2018) "Methods for reproducible shipboard SFA nutrient measurement using RMNS and automated data processing." Limnol. Oceanogr: Methods
8	Colorimetric-Sulfanilamide-NEDD Cd reduction	FIA	
9	Colorimetric-Sulfanilamide-NEDD Cd reduction	FIA	APHA-4500NO3(modified)
10	Colorimetric-Sulfanilamide-NEDD Cd reduction	SFA	Rees, C., L. Pender, K. Sherrin, C. Schwanger, P. Hughes, S. Tibben, A. Marouchos, and M. Rayner. (2018) "Methods for reproducible shipboard SFA nutrient measurement using RMNS and automated data processing." Limnol. Oceanogr: Methods
11	Ion Chromatographic Method	Ion Chromatographic Method	
12	Colorimetric-Sulfanilamide-NEDD Cd reduction	SFA	
13	Colorimetric -vanadium III method	DA	
15	Colorimetric-Sulfanilamide-NEDD Cd reduction	SFA	In house
16	Ion Chromatographic Method	IC	APHA 411 B
17	Colorimetric-Sulfanilamide-NEDD Cd reduction	FIA	Lachat QuikChem
18	Colorimetric-Sulfanilamide-NEDD Cd reduction	SFA	SFA
19	Colorimetric-Sulfanilamide-NEDD Cd reduction	SFA	Rees, C., L. Pender, K. Sherrin, C. Schwanger, P. Hughes, S. Tibben, A. Marouchos, and M. Rayner. (2018) "Methods for reproducible shipboard SFA nutrient measurement using RMNS and automated data processing." Limnol. Oceanogr: Methods
20	Colorimetric-Sulfanilamide-NEDD Cd reduction	FIA	APHA4500NO32
21	Colorimetric-Sulfanilamide-NEDD Cd reduction	FIA	Inhouse
22	Colorimetric-Sulfanilamide-NEDD Cd reduction	SFA	АРНА
23	Colorimetric-Sulfanilamide-NEDD Cd reduction	FIA	АРНА

Table 60 Measurement Methods and Instrument Techniques for Nitrate-N + Nitrite-N

Lab. Code	Measurement Method	Instrument	Method Reference
1	Ascorbic Acid Colorimetric Method	DA	АРНА
5	Ascorbic Acid Colorimetric Method	DA	АРНА
6	Ascorbic Acid Colorimetric Method	FIA	АРНА
7	Ascorbic Acid Colorimetric Method	SFA	Rees, C., L. Pender, K. Sherrin, C. Schwanger, P. Hughes, S. Tibben, A. Marouchos, and M. Rayner. (2018) "Methods for reproducible shipboard SFA nutrient measurement using RMNS and automated data processing." Limnol. Oceanogr: Methods
8	Ascorbic Acid Colorimetric Method	FIA	
9	Ascorbic Acid Colorimetric Method	FIA	APHA4500-PG
10	Ascorbic Acid Colorimetric Method	SFA	Rees, C., L. Pender, K. Sherrin, C. Schwanger, P. Hughes, S. Tibben, A. Marouchos, and M. Rayner. (2018) "Methods for reproducible shipboard SFA nutrient measurement using RMNS and automated data processing." Limnol. Oceanogr: Methods
11	Ion Chromatographic Method	Ion Chromatographic Method	
12	Ascorbic Acid Colorimetric Method	DA	
13	Vanadomolybdophosphoric Colorimetric Method	DA	
15	Ascorbic Acid Colorimetric Method	SFA	In house
17	Ascorbic Acid Colorimetric Method	FIA	Lachat QuikChem
18	Ascorbic Acid Colorimetric Method	SFA	АРНА
19	Ascorbic Acid Colorimetric Method	SFA	Rees, C., L. Pender, K. Sherrin, C. Schwanger, P. Hughes, S. Tibben, A. Marouchos, and M. Rayner. (2018) "Methods for reproducible shipboard SFA nutrient measurement using RMNS and automated data processing." Limnol. Oceanogr: Methods
20	Vanadomolybdophosphoric Colorimetric Method	DA APHA4500P	
21	Ascorbic Acid Colorimetric Method	FIA	Inhouse
22	Ascorbic Acid Colorimetric Method	SFA	АРНА
23	Ascorbic Acid Colorimetric Method	FIA	АРНА

Table 61 Measurement Methods and Instrument Techniques for Orthophosphate-P

Lab. Code	Measurement Method	Instrument	Method Reference
1	Ion Chromatographic Method	IC	АРНА
5	Ion Chromatographic Method	DA	АРНА
6	Ion Chromatographic Method	IC	Inhouse
8	ICP Method	ICP-MS	In House
9	Ion Chromatographic Method	IC	APHA4500-PG
11	Ion Chromatographic Method	Ion Chromatographic Method	
12	Ion Chromatographic Method	IC	
13	Ion Chromatographic Method	IC	
15	Ion Chromatographic Method	IC	In house
16	Ion Chromatographic Method	IC	APHA 411 B
17	Ion Chromatographic Method	IC	АРНА
18	Ion Chromatographic Method	IC	АРНА
20	ICP Method	ICP-OES	APHA3120B
21	Turbidimetric Method	FIA	Inhouse
22	Turbidimetric Method	DA	АРНА

Table 62 Measurement Methods and Instrument Techniques for Sulphate

Table 63 Measurement Methods and Instrument Techniques for Total Dissolved Nitrogen

Lab. Code	Measurement Method	Instrument	Method Reference
1	Calculation (TKN+NOx)	DA	АРНА
5	COMBUSTION	Other	
6	Persulfate digestion	FIA	АРНА
8	Persulfate digestion	FIA	
9	Calculation (TKN+NOx)		
12	Persulfate digestion	SFA	
13	Combustion analyser		
15	Calculation (TKN+NOx)	SFA	In house
17	Persulfate digestion	FIA	Lachat QuikChem
18	Persulfate digestion	SFA	АРНА
20	Calculation (TKN+NOx)	Not Applicable	NA
21	Persulfate digestion	FIA	Inhouse
22	Persulfate digestion	SFA	APHA
23	Persulfate digestion	FIA	АРНА

Lab. Code	Measur	rement Method	Instrument	Method Reference
1	HNO3-Digestion	ICP Method	ICP-OES	USEPA 6010c
5	No Digestion	ICP Method	ICP-OES	АРНА
6	K2S2O8-Digestion	Ascorbic Acid Colorimetric Method	FIA	АРНА
8	K2S2O8-Digestion	Ascorbic Acid Colorimetric Method	FIA	
9	K2S2O8-Digestion Ascorbic Acid Colorimetric Method		FIA	APHA4500-PH
13		ICP Method	ICP-OES	
15	H2SO4+K2SO4-Digestion	Ascorbic Acid Colorimetric Method	SFA	In house
17	K2S2O8-Digestion	Ascorbic Acid Colorimetric Method	FIA	Lachat QuikChem
18	K2S2O8-Digestion	Ascorbic Acid Colorimetric Method	SFA	АРНА
20	H2SO4+HNO3-Digestion	Ascorbic Acid Colorimetric Method	DA	APHA1500P
21	K2S2O8-Digestion	Ascorbic Acid Colorimetric Method	FIA	Inhouse
22	K2S2O8-Digestion	Ascorbic Acid Colorimetric Method	SFA	АРНА
23	K2S2O8-Digestion	Ascorbic Acid Colorimetric Method	FIA	АРНА

Table 64 Measurement Methods and Instrument Techniques for Total Dissolved Phosphorus

APPENDIX 7 - METHODOLOGY FOR S2

Lab. Code	Instrument	Internal Standard	Reaction/Collision Cell	Cell Mode/Gas	Final Dilution Factor	Wavelength (nm)/ Ion (m/z)/ Absorbance (nm)
1	ICP-OES-AV	Lutetium	NA	NA	Neat	208.956
5	ICP-OES-AV	Lutetium	NA	NA	2	208.956 mm
6	ICP-OES-AV	Lu			15.8	208.956
8	ICP-MS	Sc	NA	NA	1	10
9	ICP-MS	Sc	KED	He	20	10
11	ICP-MS/MS	Ge	CRI	He	100	11
12	ICP-MS					
13	ICP-OES-AV-buffer	Lu	NA	NA	5	208.956
15	ICP-OES-AV	Y 371.029				208.889
16	ICP-MS	Sc	NA	Standard Mode	10	
17	ICP-OES-AV					
18	ICP-OES-AV	Y	NA		2	249.678
20	ICP-OES-AV	Yb			10	249.772 nm
21	ICP-OES-AV-buffer	Lu				249.678
22	ICP-OES-AV					

Table 65 Instrument Techniques for Boron

Table 66 Instrument Techniques for Calcium

Lab. Code	Instrument	Internal Standard	Reaction/Collision Cell	Cell Mode/Gas	Final Dilution Factor	Wavelength (nm)/ Ion (m/z)/ Absorbance (nm)
1	ICP-OES-AV	Lutetium	NA	NA	20	315.88
5	ICP-OES-AV	Lutetium	NA	NA	2	315.887 mm
6	ICP-OES-RV	Lu			15.8	422.673
8	ICP-MS	Sc	UC	He	1	44
9	ICP-MS	Sc	KED	He	20	43
11	ICP-MS/MS	Ge	ORS	02	100	42
12	ICP-MS					
13	ICP-OES-AV-buffer	Lu	NA	NA	5	315.887
15	ICP-OES-AV	Y 371.029				430.253
16	ICP-MS	Sc	CRI	He	10	
17	ICP-OES-RV					
18	ICP-OES-RV	Y	NA		100	422.673
20	ICP-OES-AV	Yb			10	317.93 nm
21	ICP-OES-AV-buffer	Lu				430.253
22	ICP-OES-AV					

Lab. Code	Instrument	Internal Standard	Reaction/Collision Cell	Cell Mode/Gas	Final Dilution Factor	Wavelength (nm)/ Ion (m/z)/ Absorbance (nm)
1	ICP-OES-AV	Lutetium	NA	NA	20	166.491
5	ICP-OES-AV	Lutetium	NA	NA	20	766.491 mm
6	ICP-OES-RV	Lu			15.8	766.491
8	ICP-MS	Sc	UC	He	1	39
9	ICP-MS	Sc	KED	He	20	39
11	ICP-MS/MS	Ge	CRI	He	100	39
12	ICP-MS					
13	ICP-OES-AV-buffer	Rb	NA	NA	5	766.491
15	ICP-OES-AV	Y 371.029				769.897
16	ICP-MS	Sc	CRI	He	10	
17	ICP-OES-RV					
18	ICP-OES-RV	Y	NA		100	766.491
20	ICP-OES-AV	Yb			10	766.491 nm
21	ICP-OES-AV-buffer	Lu				766.491
22	ICP-OES-AV					

Table 67 Instrument Techniques for Potassium

Table 68 Instrument Techniques for Magnesium

Lab. Code	Instrument	Internal Standard	Reaction/Collision Cell	Cell Mode/Gas	Final Dilution Factor	Wavelength (nm)/ Ion (m/z)/ Absorbance (nm)
1	ICP-OES-AV	Lutetium	NA	NA	20	279.8
5	ICP-OES-AV	Lutetium	NA	NA	2	279.800 mm
6	ICP-OES-RV	Lu			15.8	285.213
8	ICP-MS	Sc	UC	He	1	25
9	ICP-MS	Sc	KED	He	20	25
11	ICP-MS/MS	Ge	CRI	He	100	24
12	ICP-MS					
13	ICP-OES-AV-buffer	Lu	NA	NA	5	278.412
15	ICP-OES-AV	Y 371.029				277.983
16	ICP-MS	Sc	CRI	He	10	
17	ICP-OES-AV					
18	ICP-OES-RV	Y	NA		100	279.078
20	ICP-OES-AV	Yb			10	383.23nm
21	ICP-OES-AV-buffer	Lu				279.078
22	ICP-OES-AV					

Lab. Code	Instrument	Internal Standard	Reaction/Collision Cell	Cell Mode/Gas	Final Dilution Factor	Wavelength (nm)/ Ion (m/z)/ Absorbance (nm)
1	ICP-OES-AV	Lutetium	NA	NA	400	589.59
5	ICP-OES-AV	Lutetium	NA	NA	20	588.955 mmm
6	ICP-OES-RV	Lu			15.8	589.592
8	ICP-MS	Sc	UC	He	1	23
9	ICP-MS	Sc	KED	He	20	23
11	ICP-MS/MS	Ge	CRI	He	100	23
12	ICP-MS					
13	ICP-OES-AV-buffer	Lu	NA	NA	5	330.298
15	ICP-OES-AV	Y 371.029				588.995
16	ICP-MS	Sc	CRI	He	1000	
17	ICP-OES-RV					
18	ICP-OES-RV	Y	NA		100	589.592
20	ICP-OES-AV	Yb			10	330.23 nm
21	ICP-OES-AV-buffer	Lu				589.592
22	ICP-OES-AV					

Table 69 Instrument Techniques for Sodium

Table 70 Measurement Methods and Instrument Techniques for Alkalinity

Lab. Code	Measurement Method	Instrument	Method Reference
1	Titration	Auto Titration	APHA
5	Titration	Auto Titration	APHA
8	Titration	Auto Titration	
9	Titration	Auto Titration	APHA2320B
12	Titration	Auto Titration	
13	Titration	Auto Titration	
15	Titration	Auto Titration	In house
16	Titration	Manual Analysis	APHA 2320-Alkalinity
17	Titration	Auto Titration	APHA
18	Titration	Auto Titration	APHA
20	Titration	Auto Titration	APHA2320
21	Titration	Manual Analysis	Inhouse
22	Titration		

Lab. Code	Measurement Method	Instrument	Method Reference
1	ICP-Method	ICP-OES	USEPA
5	Molybdosilicate Method	DA	АРНА
6	ICP-Method	ICP-MS	Inhouse
7	Molybdosilicate Method	SFA	Rees, C., L. Pender, K. Sherrin, C. Schwanger, P. Hughes, S. Tibben, A. Marouchos, and M. Rayner. (2018) "Methods for reproducible shipboard SFA nutrient measurement using RMNS and automated data processing." Limnol. Oceanogr: Methods
8	ICP-Method	ICP-MS	
9	Heteropoly Blue Method	FIA	APHA4500-SiO2F modified
10	Molybdosilicate Method	SFA	Rees, C., L. Pender, K. Sherrin, C. Schwanger, P. Hughes, S. Tibben, A. Marouchos, and M. Rayner. (2018) "Methods for reproducible shipboard SFA nutrient measurement using RMNS and automated data processing." Limnol. Oceanogr: Methods
12	Molybdosilicate Method	DA	
13	Molybdosilicate Method	DA	
15	Molybdosilicate Method	DA	In house
17	ICP-Method	ICP-OES	
18	ICP-Method	ICP-OES	USEPA
19	Molybdosilicate Method	SFA	Rees, C., L. Pender, K. Sherrin, C. Schwanger, P. Hughes, S. Tibben, A. Marouchos, and M. Rayner. (2018) "Methods for reproducible shipboard SFA nutrient measurement using RMNS and automated data processing." Limnol. Oceanogr: Methods
20	ICP-Method	ICP-OES	APHA3120
22	Molybdosilicate Method		
23	Molybdosilicate Method	FIA	АРНА

Table 71 Measurement Methods and Instrument Techniques for Silica

Lab. Code	Measurement Method	Instrument	Method Reference
1	Calculation	ICP-OES	
5	Calculation	ICP-OES	АРНА
8	Titration	Manual Analysis	
9	Calculation		
12	Calculation	Not Applicable	
13	Calculation	ICP-OES	
15	Calculation	ICP-OES	In house
16	Calculation	ICP-MS	APHA 2340 B-Hardness
18	Calculation	ICP-OES	АРНА
20	Calculation		
22	Calculation		

Table 72 Measurement Methods and Instrument Techniques for Total Hardness

APPENDIX 8 – METHODOLOGY FOR S3

Lab. Code	Instrument	Internal Standard	Reaction/Collision Cell	Cell Mode/Gas	Final Dilution Factor	Wavelength (nm)/ Ion (m/z)/ Absorbance (nm)
1	ICP-OES-AV	Lutetium	NA	NA	2	208.956
2	ICP-OES-AV	Lu				208
5	ICP-OES-AV	Lutetium	NA	NA	1	208.956 mm
6	ICP-OES-AV	Lu			15.8	208.956
8	ICP-MS	Sc	NA	NA	1	10
11	ICP-MS/MS	Ge	CRI	He	100	11
12	ICP-MS					
13	ICP-OES-AV-buffer	Lu	NA	NA	1	208.956
15	ICP-MS/MS	Sc45	ORS	He		11
16	ICP-MS	Sc	NA	Standard Mode	10	
17	ICP-OES-AV					
18	ICP-OES-AV	Y	NA	NA	2	249.678
21	ICP-OES-AV-buffer	Lu				249.678
22	ICP-OES-AV					

Table 73 Instrument Techniques for Boron

Table 74 Instrument Techniques for Calcium

Lab. Code	Instrument	Internal Standard	Reaction/Collision Cell	Cell Mode/Gas	Final Dilution Factor	Wavelength (nm)/ Ion (m/z)/ Absorbance (nm)
1	ICP-OES-AV	Lutetium	NA	NA	50	315.88
2	ICP-OES-AV	Lu				317
3	Other	ION 96.4/ARD-01	NA	Other	1	422.7
4	ICP-OES-AV					317.93
5	ICP-OES-AV	Lutetium	NA	NA	1	315.887 mm
6	ICP-OES-RV	Lu			15.8	422.673
8	ICP-MS	Sc	UC	He	1	44
11	ICP-MS/MS	Ge	ORS	02	100	42
12	ICP-MS					
13	ICP-OES-AV-buffer	Lu	NA	NA	1	422.673
15	ICP-MS/MS	Sc45	ORS	He		44
16	ICP-MS	Sc	CRI	He	10	
17	ICP-OES-RV					
18	ICP-OES-RV	Y	NA	NA	2	422.673
21	ICP-OES-AV-buffer	Lu				430.253
22	ICP-OES-AV					

Lab. Code	Instrument	Internal Standard	Reaction/Collision Cell	Cell Mode/Gas	Final Dilution Factor	Wavelength (nm)/ Ion (m/z)/ Absorbance (nm)
1	ICP-OES-AV	Lutetium	NA	NA	50	166.491
2	ICP-OES-AV	Lu				766
3	Other	ION 96.4/ARD-02	NA	Other	1	766.5
4	ICP-OES-AV					766.49
5	ICP-OES-AV	Lutetium	NA	NA	1	766.491 mm
6	ICP-OES-RV	Lu			15.8	766.491
8	ICP-MS	Sc	UC	He	1	39
11	ICP-MS/MS	Ge	CRI	He	100	39
12	ICP-MS					
13	ICP-OES-AV-buffer	Lu	NA	NA	1	766.491
15	ICP-MS/MS	Sc45	ORS	He		39
16	ICP-MS	Sc	CRI	He	10	
17	ICP-OES-RV					
18	ICP-OES-RV	Y	NA	NA	2	766.491
21	ICP-OES-AV-buffer	Lu				766.491
22	ICP-OES-AV					

Table 75 Instrument Techniques for Potassium

Table 76 Instrument Techniques for Magnesium

Lab. Code	Instrument	Internal Standard	Reaction/Collision Cell	Cell Mode/Gas	Final Dilution Factor	Wavelength (nm)/ Ion (m/z)/ Absorbance (nm)
1	ICP-OES-AV	Lutetium	NA	NA	50	279.8
2	ICP-OES-AV	Lu				280
3	Other	ION 96.4/ARD-03	NA	Other	10	285.2
4	ICP-OES-AV					285.212
5	ICP-OES-AV	Lutetium	NA	NA	1	279.800 mm
6	ICP-OES-RV	Lu			15.8	285.213
8	ICP-MS	Sc	UC	He	1	25
11	ICP-MS/MS	Ge	CRI	He	100	24
12	ICP-MS					
13	ICP-OES-AV-buffer	Lu	NA	NA	1	285.213
15	ICP-MS/MS	Sc45	ORS	He		24
16	ICP-MS	Sc	CRI	He	10	
17	ICP-OES-AV					
18	ICP-OES-RV	Y	NA	NA	2	279.078
21	ICP-OES-AV-buffer	Lu				279.078
22	ICP-OES-AV					

Lab. Code	Instrument	Internal Standard	Reaction/Collision Cell	Cell Mode/Gas	Final Dilution Factor	Wavelength (nm)/ Ion (m/z)/ Absorbance (nm)
1	ICP-OES-AV	Lutetium	NA	NA	1000	589.59
2	ICP-OES-AV	Lu				588
3	Other	ION 96.4/ARD-04	NA	Other	10	589
4	ICP-OES-AV					589.592
5	ICP-OES-AV	Lutetium	NA	NA	1	588.995 mm
6	ICP-OES-RV	Lu			15.8	589.592
8	ICP-MS	Sc	UC	He	1	23
11	ICP-MS/MS	Ge	CRI	He	100	23
12	ICP-MS					
13	ICP-OES-AV-buffer	Lu	NA	NA	1	589.592
15	ICP-MS/MS	Sc45	ORS	He		23
16	ICP-MS	Sc	CRI	He	1000	
17	ICP-OES-RV					
18	ICP-OES-RV	Y	NA	NA	2	589.592
21	ICP-OES-AV-buffer	Lu				589.592
22	ICP-OES-AV					

Table 77 Instrument Techniques for Sodium

Table 78 Measurement Methods and Instrument Techniques for Ammonia-N

Lab. Code	Measurement Method	Instrument	Method Reference
1	Colorimetric - Phenate Method	DA	АРНА
3	Colorimetric - Salicylate Method	UV-Vis Spectrophotometer	
4	Colorimetric - Phenate Method	UV-Vis Spectrophotometer	
5	Colorimetric - Phenate Method	DA	АРНА
6	Colorimetric - Phenate Method	FIA	АРНА
8	Colorimetric - Phenate Method	FIA	
12	Colorimetric - Salicylate Method	DA	
13	Colorimetric - Phenate Method	DA	
15	Colorimetric - Phenate Method	SFA	In house
16	Ion Selective Electrode Method	Ion Selective Electrode	APHA 4500
17	Colorimetric - Phenate Method	FIA	Lachat QuikChem
18	Fluorometric Determination - OPA Method	SFA	SFA
21	Colorimetric - Phenate Method	FIA	Inhouse
22	Colorimetric - Phenate Method	SFA	АРНА
23	Colorimetric - Phenate Method	FIA	АРНА

Lab. Code	Measurement Method	Instrument	Method Reference
1	Ion Chromatographic Method	IC	АРНА
2	Other	ICP-MS	
5	Ion Chromatographic Method	IC	АРНА
6	Ion Chromatographic Method	IC	Inhouse
8	ICP Method	ICP-MS	
11	Ion Chromatographic Method	IC	
12	Ion Chromatographic Method	IC	
13	Ion Chromatographic Method	IC	
15	Ion Chromatographic Method	IC	In house
16	Colorimetric Method	IC	APHA 411 B
17	Ion Chromatographic Method	IC	АРНА
18	Ion Chromatographic Method	IC	АРНА
22	Ion Chromatographic Method	IC	АРНА

Table 79 Measurement Methods and Instrument Techniques for Bromide

Table 80 Measurement Methods and Instrument Techniques for Chloride

Lab. Code	Measurement Method	Instrument	Method Reference
1	Ion Chromatographic Method	IC	APHA
2	Ferricyanide Colorimetric Method	UV-Vis Spectrophotometer	4500 Cl- E (APHA)
3	Argentometric Titration	UV-Vis Spectrophotometer	8225 HACH
4	Argentometric Titration	Manual Analysis	
5	Ion Chromatographic Method	IC	APHA
6	Ion Chromatographic Method	IC	Inhouse
11	Ion Chromatographic Method	IC	
12	Ion Chromatographic Method	IC	
13	Ion Chromatographic Method	IC	
15	Ion Chromatographic Method	IC	In house
16	Ion Chromatographic Method	IC	APHA 411 B
17	Ion Chromatographic Method	IC	APHA
18	Ion Chromatographic Method	IC	APHA
21	Ferricyanide Colorimetric Method	FIA	Inhouse
22	Ion Chromatographic Method	IC	APHA

Lab. Code	Measurement Method	Instrument	Method Reference
1	High-Temperature Oxidation	NIR-detector	АРНА
5	High-Temperature Oxidation	NIR-detector	АРНА
8	High-Temperature Oxidation	Shimadzu TOC-L	
12	High-Temperature Oxidation	NIR-detector	
13	High-Temperature Oxidation	NIR-detector	
15	Wet-Oxidation	NIR-detector	In house
17	High-Temperature Oxidation	NIR-detector	АРНА
18	High-Temperature Oxidation	NIR-detector	АРНА
21	High-Temperature Oxidation	NIR-detector	Inhouse
22	High-Temperature Oxidation	NIR-detector	АРНА

Table 81 Measurement Methods and Instrument Techniques for Dissolved Organic Carbon

Table 82 Measurement Methods and Instrument Techniques for Fluoride

Lab. Code	Measurement Method	Instrument	Method Reference
1	Ion Selective Electrode Method	Ion Selective Electrode	NEPM
2	Ion Selective Method	Ion Selective Electrode	4500 F- C (APHA)
3	SPADNS Colorimetric Method	UV-Vis Spectrophotometer	8029 HACH
4	Ion Selective Electrode Method	Ion Selective Electrode	
5	Ion Selective Electrode Method	Ion Selective Electrode	APHA
6	Ion Chromatographic Method	IC	Inhouse
8	Ion Selective Electrode Method	Ion Selective Electrode	
11	Ion Chromatographic Method	IC	
12	Ion Chromatographic Method	IC	
13	Ion Selective Electrode Method	Ion Selective Electrode	
15	Ion Chromatographic Method	IC	In house
16	Ion Chromatographic Method	IC	APHA 411 B
17	Ion Chromatographic Method	IC	APHA
18	Ion Chromatographic Method	IC	АРНА
21	Ion Selective Electrode Method	Ion Selective Electrode	Inhouse
22	Ion Selective Electrode Method	Auto Titration	АРНА

Lab. Code	Measurement Method	Instrument	Method Reference
1	Colorimetric -vanadium III method	DA	АРНА
3	Colorimetric-Sulfanilamide-NEDD Cd reduction	UV-Vis Spectrophotometer	8171 HACH
4	Colorimetric -vanadium III method	UV-Vis Spectrophotometer	
5	Colorimetric -vanadium III method	DA	АРНА
6	Colorimetric-Sulfanilamide-NEDD Cd reduction	FIA	АРНА
8	Colorimetric-Sulfanilamide-NEDD Cd reduction	FIA	
11	Ion Chromatographic Method	IC	
12	Calculation	Not Applicable	
13	Colorimetric -vanadium III method	DA	
15	Colorimetric-Sulfanilamide-NEDD Cd reduction	SFA	In house
16	Ion Chromatographic Method	IC	APHA 411 B
17	Colorimetric-Sulfanilamide-NEDD Cd reduction	FIA	Lachat QuikChem
18	Colorimetric-Sulfanilamide-NEDD Cd reduction	SFA	APHA
21	Colorimetric-Sulfanilamide-NEDD Cd reduction	FIA	Inhouse
22	Calculation	SFA	АРНА
23	Colorimetric-Sulfanilamide-NEDD Cd reduction	FIA	АРНА

Table 83 Measurement Methods and Instrument Techniques for Nitrate-N

Table 84 Measurement Methods and Instrument Techniques for Nitrite-N

Lab. Code	Measurement Method	Instrument	Method Reference
1	Colorimetric Method	DA	APHA
3	Colorimetric Method	UV-Vis Spectrophotometer	8507 HACH
4	Colorimetric Method	UV-Vis Spectrophotometer	
5	Colorimetric Method	DA	APHA
6	Colorimetric Method	FIA	APHA
8	Colorimetric-Sulfanilamide-NEDD Cd reduction	FIA	
11	Ion Chromatographic Method	IC	
12	Colorimetric Method	SFA	
13	Colorimetric Method	DA	
15	Colorimetric Method	SFA	In house
17	Colorimetric Method	FIA	Lachat QuikChem
18	Colorimetric Method	SFA	APHA
21	Colorimetric Method	FIA	Inhouse
22	Colorimetric Method	SFA	APHA
23	Colorimetric Method	FIA	APHA

Lab. Code	Measurement Method	Instrument	Method Reference
1	Ascorbic Acid Colorimetric Method	DA	APHA
2	Ascorbic Acid Colorimetric Method	UV-Vis Spectrophotometer	4500-P E (APHA)
3	Ascorbic Acid Colorimetric Method	UV-Vis Spectrophotometer	8048 HACH
4	Vanadomolybdophosphoric Colorimetric Method	UV-Vis Spectrophotometer	
5	Ascorbic Acid Colorimetric Method	DA	APHA
6	Ascorbic Acid Colorimetric Method	FIA	APHA
8	Ascorbic Acid Colorimetric Method	FIA	
11	Ion Chromatographic Method	IC	
12	Ascorbic Acid Colorimetric Method	DA	
13	Vanadomolybdophosphoric Colorimetric Method	DA	
15	Ascorbic Acid Colorimetric Method	SFA	In house
17	Ascorbic Acid Colorimetric Method	FIA	Lachat QuikChem
18	Ascorbic Acid Colorimetric Method	SFA	АРНА
21	Ascorbic Acid Colorimetric Method	FIA	Inhouse
22	Ascorbic Acid Colorimetric Method	SFA	АРНА
23	Ascorbic Acid Colorimetric Method	FIA	APHA

Table 85 Measurement Methods and Instrument Techniques for Orthophosphate-P

Table 86 Measurement Methods and Instrument Techniques for Sulphate

Lab. Code	Measurement Method	Instrument	Method Reference
1	Ion Chromatographic Method	IC	АРНА
2	ICP Method	ICP-OES	
3	Turbidimetric Method	UV-Vis Spectrophotometer	8051 HACH
4	ICP Method	ICP-OES	
5	Ion Chromatographic Method	IC	АРНА
6	Ion Chromatographic Method	IC	Inhouse
11	Ion Chromatographic Method	IC	
12	Ion Chromatographic Method	IC	
13	Ion Chromatographic Method	IC	
15	Ion Chromatographic Method	IC	In house
16	Ion Chromatographic Method	IC	APHA 411 B
17	Ion Chromatographic Method	IC	APHA
18	Ion Chromatographic Method	IC	АРНА
21	Turbidimetric Method	FIA	Inhouse
22	Ion Chromatographic Method	IC	АРНА

Lab. Code	Measurement Method	Instrument	Method Reference
1	Calculation (TKN+NOx)	DA	APHA
5	COMBUSTION	Other	
6	Persulfate digestion	FIA	APHA
8	Persulfate digestion	FIA	
12	Persulfate digestion	SFA	
13	Combustion	Chemiluminescence detector	
15	Calculation (TKN+NOx)	SFA	In house
17	Persulfate digestion	FIA	Lachat QuikChem
18	Persulfate digestion	SFA	APHA
21	Persulfate digestion	FIA	Inhouse
22	Persulfate digestion	SFA	APHA
23	Persulfate digestion	FIA	APHA

Table 87 Measurement Methods and Instrument Techniques for Total Dissolved Nitrogen

Table 88 Measurement Methods and Instrument Techniques for Total Dissolved Phosphorus

Lab. Code	Measurement Method		Instrument	Method Reference
1	HNO3-Digestion	ICP Method	ICP-OES	USEPA 6010c
3	H2SO4+K2SO4-Digestion	Ascorbic Acid Colorimetric Method	UV-Vis Spectrophotometer	8190 HACH
5	No Digestion	ICP Method	ICP-OES	USEPA 6010c
6	K2S2O8-Digestion	Ascorbic Acid Colorimetric Method	FIA	АРНА
8	K2S2O8-Digestion	Ascorbic Acid Colorimetric Method	FIA	
12	K2S2O8-Digestion	Ascorbic Acid Colorimetric Method	DA	
13	No Digestion	ICP Method	ICP-OES	
15	H2SO4+K2SO4-Digestion	Ascorbic Acid Colorimetric Method	SFA	In house
17	K2S2O8-Digestion	Ascorbic Acid Colorimetric Method	FIA	Lachat QuikChem
18	K2S2O8-Digestion	Ascorbic Acid Colorimetric Method	SFA	АРНА
21	K2S2O8-Digestion	Ascorbic Acid Colorimetric Method	FIA	Inhouse
22	K2S2O8-Digestion	Ascorbic Acid Colorimetric Method	SFA	АРНА
23	K2S2O8-Digestion	Ascorbic Acid Colorimetric Method	FIA	АРНА

APPENDIX 9 – METHODOLOGY FOR S4

Lab. Code	Measurer	Measurement Method		Method Reference
1	Kjeldahl (H2SO4+K2SO4 digestion)	Colorimetric - salicylate method	DA	АРНА
5	Other	CALCULATION	Not Applicable	
6	Kjeldahl (H2SO4+K2SO4 digestion)	Colorimetric - salicylate method	FIA	АРНА
8	TKN=TN-NOx (K2S2O8 digestion)		FIA	
9	Kjeldahl (H2SO4+K2SO4 digestion)	Colorimetric - salicylate method	DA	APHA4500_N.orgD modified
12	Other	Other	Not Applicable	
13		Calculation		
15	Kjeldahl (H2SO4+K2SO4 digestion)	Colorimetric - salicylate method	SFA	In house
17	TKN=TN-NOx (K2S2O8 digestion)	Colorimetric-Sulfanilamide-NEDD Cd reduction	FIA	
18	TKN=TN-NOx (K2S2O8 digestion)	Calculation from TN and NOX	SFA	АРНА
22	TKN=TN-NOx (K2S2O8 digestion)	Colorimetric-Sulfanilamide-NEDD Cd reduction	SFA	АРНА

Table 89 Measurement Methods and Instrument Techniques for Total Kjeldahl Nitrogen

Table 90 Measurement Methods and Instrument Techniques for Total Nitrogen

Lab. Code	Measurement Method	Instrument	Method Reference
1	Calculation (TKN+NOx)	DA	APHA
5	COMBUSTION	Other	
6	Persulfate digestion	FIA	APHA
8	Persulfate digestion	FIA	
9	Calculation (TKN+NOx)	IC	
12	Persulfate digestion	SFA	
13	Combustion	Chemiluminescence detector	
15	Calculation (TKN+NOx)	SFA	In house
16	Persulfate digestion	IC	ASTM D8001-16e1
17	Persulfate digestion	FIA	Lachat QuikChem
18	Persulfate digestion	SFA	APHA
21	Persulfate digestion	FIA	Inhouse
22	Persulfate digestion	SFA	APHA
23	Persulfate digestion	FIA	АРНА

Lab. Code	Measurement Method	Instrument	Method Reference
1	High-Temperature Oxidation	NIR-detector	АРНА
5	High-Temperature Oxidation	NIR-detector	АРНА
8	High-Temperature Oxidation	Shimadzu TOC-L	
9	Super critical persulphate oxidation	NIR-detector	APHA5310C modified
12	High-Temperature Oxidation	NIR-detector	
13	High-Temperature Oxidation	NIR-detector	
15	Wet-Oxidation	NIR-detector	In house
17	High-Temperature Oxidation	NIR-detector	АРНА
18	High-Temperature Oxidation	NIR-detector	APHA
21	High-Temperature Oxidation	NIR-detector	Inhouse
22	High-Temperature Oxidation	NIR-detector	АРНА

Table 91 Measurement Methods and Instrument Techniques for Total Organic Carbon

END OF REPORT