

Australian Government

Department of Industry, Science, Energy and Resources National Measurement Institute

NMI R 46-3 Active-energy electricity meters

Part 3: Test report format

June 2022 www.measurement.gov.au © Commonwealth of Australia (2022)

NMI R 46-3First edition— June 2022

National Measurement Institute Bradfield Road, Lindfield, NSW 2070

T: +61 2 8467 3600

- F: +61 2 8467 3610
- W: www.measurement.gov.au

Preface

This document provides the test report format for active-energy electricity meters to accompany NMI R 46-1-2, v1.0 (June 2022) Active Electrical Energy Meters.

The test report format is an identical adoption from OIML R 46-3 (2013) *Active Electrical Energy Meters. Part 3: Test report format* published by the International Organisation of Legal Metrology (OIML).

Please refer to NMI R 46-1-2 for all requirements, noting that this is not an identical adoption of OIML R 46-1/-2 (2013), and includes Australian amendments and interpretations.

INTERNATIONAL

OIML R 46-3

RECOMMENDATION

Edition 2013 (E)

Active Electrical Energy Meters. Part 3: Test report format

Compteurs actifs d'énergie électrique. Partie 1: Exigences métrologies et techniques Partie 2: Contrôles métrologiques et essais de performance

ORGANISATION INTERNATIONALE DE METROLOGIE LEGALE

INTERNATIONAL ORGANIZATION OF LEGAL METROLOGY

Contents

1	Inform	nation	6
	1.1	Meter specification	6
	1.2	Test values	6
2	Gener	al	7
	2.1	Requirements Checklist	7
	2.2	Timing requirements for interval and multi-tariff meters (3.4)	8
	2.3	Storage Period for interval and multi-tariff data (3.4)	8
	2.4	Meter Markings (3.5)	
3	Valida	ation procedure (protection of metrological properties) (4.3; 3.6)	
4	Tests	for maximum permissible error	11
	4.1	Initial intrinsic error for positive and negative flow (6.2.1)	11
	4.2	Reverse energy flow (6.2.1)	
	4.3	Self heating (6.2.2)	13
	4.4	Starting current (6.2.3)	14
	4.5	Test of no-load condition (6.2.4)	14
	4.6	Meter constants (6.2.5)	15
5	Tests	for influence quantities	16
	5.1	Temperature dependence (6.3.2; Table 3)	16
	5.2	Load balance (6.3.3)	
	5.3	Voltage variation (6.3.4)	
	5.4	Frequency variations (6.3.5)	
	5.5	Harmonics in voltage and current (6.3.6)	
	5.6	Tilt (6.3.7)	
	5.7	Severe voltage variations (6.3.8)	
	5.8	One or two phases interrupted (6.3.9)	
	5.9	Sub-harmonics in the AC current circuit (6.3.10)	
	5.10	Harmonics in the AC current circuit (6.3.11)	
	5.11	Reversed phase sequence (any two phases interchanged) (6.3.12)	
	5.12	Continuous (DC) magnetic induction of external origin (6.3.13)	
	5.13	Magnetic field (AC, power frequency) of external origin (6.3.14)	
	5.14	Radiated, radio frequency (RF), electromagnetic fields (6.3.15.1)	
	5.15	Immunity to Conducted Disturbances, Induced by Radiofrequency Fields (6.3.15.2)	
	5.16	DC in the AC current circuit (6.3.16)	
	5.17	High-order harmonics (6.3.17)	
6	Test f	or disturbances	
	6.1	Critical change value (6.4.1 a); 3.3.6.2)	
	6.2	Magnetic field (AC, power frequency) of external origin (6.4.2)	
	6.3	Electrostatic discharge (6.4.3)	
	6.4	Fast transients (6.4.4)	
	6.5	Voltage dips and interruptions (6.4.5)	
	6.6	Radiated, radio frequency (RF), electromagnetic fields (6.4.6)	
	6.7	Surges on AC mains power lines (6.4.7)	
	6.8	Damped oscillatory waves immunity test (6.4.8)	
	6.9	Short-time overcurrent (6.4.9)	
	6.10	Impulse Voltage (6.4.10)	
	6.11	Earth Fault (6.4.11)	
	6.12	Operation of auxiliary devices (6.4.12)	

6.13	Vibrations (6.4.13.1)	
6.14	Shock (6.4.13.2)	41
6.15	Protection against solar radiation (6.4.14)	
6.16	Protection against ingress of dust (6.4.15)	43
6.17	Extreme temperatures - Dry Heat (6.4.16.1)	
6.18	Extreme temperatures - Cold (6.4.16.2)	
6.19	Damp Heat, steady-state (non-condensing), for humidity class H1 (6.4.16.3)	
6.20	Damp Heat, cyclic (condensing), for humidity class H2 and H3 (6.4.16.4)	47
6.21	Water test (6.4.16.5)	
6.22	Durability (6.4.17)	

Foreword

The International Organization of Legal Metrology (OIML) is a worldwide, intergovernmental organization whose primary aim is to harmonize the regulations and metrological controls applied by the national metrological services, or related organizations, of its Member States. The main categories of OIML publications are:

- International Recommendations (OIML R), which are model regulations that establish the metrological characteristics required of certain measuring instruments and which specify methods and equipment for checking their conformity. OIML Member States shall implement these Recommendations to the greatest possible extent;
- International Documents (OIML D), which are informative in nature and which are intended to harmonize and improve work in the field of legal metrology;
- International Guides (OIML G), which are also informative in nature and which are intended to give guidelines for the application of certain requirements to legal metrology;
- International Basic Publications (OIML B), which define the operating rules of the various OIML structures and systems; and

OIML Draft Recommendations, Documents and Guides are developed by Project Groups linked to Technical Committees or Subcommittees which comprise representatives from OIML Member States. Certain international and regional institutions also participate on a consultation basis. Cooperative agreements have been established between the OIML and certain institutions, such as ISO and the IEC, with the objective of avoiding contradictory requirements. Consequently, manufacturers and users of measuring instruments, test laboratories, etc. may simultaneously apply OIML publications and those of other institutions.

International Recommendations, Documents, Guides and Basic Publications are published in English (E) and translated into French (F) and are subject to periodic revision.

Additionally, the OIML publishes or participates in the publication of **Vocabularies (OIML V)** and periodically commissions legal metrology experts to write **Expert Reports (OIML E)**. Expert Reports are intended to provide information and advice, and are written solely from the viewpoint of their author, without the involvement of a Technical Committee or Subcommittee, nor that of the CIML. Thus, they do not necessarily represent the views of the OIML.

This publication - reference OIML R 46-3, edition 2013 (E) – was developed by OIML TC 12 *Instruments for measuring electrical quantities*. It was approved for final publication by the International Committee of Legal Metrology at its 48th meeting in Ho Chi Minh City, Viet Nam, in October 2013.

OIML Publications may be downloaded from the OIML web site in the form of PDF files. Additional information on OIML Publications may be obtained from the Organization's headquarters:

Bureau International de Métrologie Légale11, rue Turgot - 75009 Paris - FranceTelephone:33 (0)1 48 78 12 82Fax:33 (0)1 42 82 17 27E-mail:biml@oiml.orgInternet:www.oiml.org

1 Information

1.1 Meter specification

-	
Application no.:	
Meter manufacturer:	
Meter model:	
Serial number(s):	
Meter type (electromechanical/static):	
Accuracy class:	
Nominal voltage, U_{nom} :	V
Nominal frequency, <i>f</i> _{nom} :	Hz
Maximum current, <i>I</i> _{max} :	A
Transitional current, I_{tr} :	Α
Minimum current, <i>I</i> _{min} :	A
Starting current, <i>I</i> _{st} :	A
Direct-connected	Current transformer Current and voltage transformers
Connection mode (phases, wires, elements):	
Alternative connection mode(s):	
Direction of energy flow / registers:	
	Single mainten antition dimetion anter
Single-register, bi-directional	Single-register, positive direction only
Two-register, bi-directional	Single-register, uni-directional
Register multiplier:	
Meter constant:	<i>(include units of measurement)</i>
Specified clock frequencies:	(include units of measurement)
Indoor / Outdoor:	
IP Rating:	
Terminal arrangement (eg: BS, DIN):	
Insulation Protection Class:	
Lower specified temperature:	$-55 \degree C$ $-40 \degree C$ $-25 \degree C$ $-10 \degree C$ $+5 \degree C$
Upper specified temperature:	
Humidity class:	H1 H2 H3
Tilt / Mounting position:	Mounting position specified Any position is allowed
Handrey and the	
Hardware version(s):	
Software version(s):	

Remarks:

1.2 Test values

When ranges of values are specified by the manufacturer, the values used for testing shall be specified below.

Test voltage:	V
Test frequency:	Hz
Test connection mode:	

2 General

2.1 Requirements Checklist

Clause	Description	Passed	Failed	Remarks		
3.1	Units of measurement					
	Valid units of measurement (Wh, kWh, MWh, GWh)					
3.2;	Rated operating conditions (Table 1)					
Table 1	Check $I_{\text{max}}/I_{\text{tr}}$ ratio complies					
	Check <i>I</i> _{max} / <i>I</i> _{min} ratio complies					
	Check $I_{\text{max}}/I_{\text{st}}$ ratio complies					
3.4	Requirements for interval and multi-tariff meters					
	For interval meters, the summation of interval data shall equate to					
	the cumulative register value over the same period					
	One and only one register (in addition to the cumulative register)					
	shall be active at any time					
	The summation of values recorded in each multi-tariff register shall					
	equate to the value recorded in the cumulative register					
3.6.9	Checking facility event record					
	Check any checking facility for sufficient room for events and that					
	it is of the first-in-first-out type.					
3.7.1	Readability of result					
	Indicating device is easy to read					
	Height of characters of measurement result $\geq 4 \text{ mm}$					
	All decimal fractions are clearly indicated					
	Able to display all data relevant for billing purposes					
	All registers relevant for billing can store and display energy =					
	$(4000 \cdot U_{\text{nom}} \cdot I_{\text{max}} \cdot n)$ Wh, where <i>n</i> is the number of phases. (4000 h).					
	For mechanical registers					
	All decimal fraction drums are marked differently					
	For auto-sequencing displays					
	Each register for billing purposes is retained for ≥ 5 s					
	For multi-tariff meters					
	The register which reflects the active tariff is indicated					
	It is possible to read each tariff register locally and each register is					
	clearly identified					
	For electronic registers					
	Retention time for results for a disconnected meter is ≥ 1 year					
	Electronic indicating devices are provided with a display test					
3.7.2	Testability					
	The meter is equipped with a test output					
	The wavelength of radiated signals is between 550 nm to 1000 nm.					
	The radiation strength $E_{\rm T}$ complies with limits at on and off					
	conditions.					

2.2 Timing requirements for interval and multi-tariff meters (3.4)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

• Limits shall be determined from IEC 62054-21 based on clock type.

Test	Temperature (°C)	Duration	Result (s/day)	Limit (s/day)
Mains operation	23	30 days		
High temperature:	45	24 hours		
Low temperature:	-10	24 hours		
Operation reserve:	-	36 hours		

• Check that each $|result| \le |limit|$

Passed	
--------	--

Remarks:

2.3 Storage Period for interval and multi-tariff data (3.4)

Failed

Specify Storage Period	Remarks

2.4 Meter Markings (3.5)

Description	Passed	Failed	Remarks
Markings are indelible, distinct and legible from outside the meter			
Serial number affixed in position not readily disassociated from meter			

Matan Maultin a	Valid marki	ng on meter?	Remarks		
Meter Marking	Yes	No	Kemarks		
Manufacturer					
Nominal Voltage U_{nom}					
Maximum current <i>I</i> _{max}					
Transitional current <i>I</i> tr					
Minimum current <i>I</i> _{min}					
Approval mark(s)					
Serial number					
Number of phases					
Number of wires					
Register multiplier (if other than unity)					
Meter constant(s)					
Year of manufacture					
Accuracy class					
Directionality of energy flow (if required)					
Meter type					
Temperature range					
Humidity and water protection information					
Impulse voltage protection information					
Nominal frequency f_{nom}					
The connection mode(s) for which the meter					
is specified					
Connection terminals uniquely identified to					
distinguish between terminals					

3 Validation procedure (protection of metrological properties) (4.3; 3.6)

Meter serial no.		At start	At end
Observer:	Temperature (°C):		
Date:	Time (hh:mm):		

- The two applicable validation procedures are as follows:
- AD: Analysis of the documentation and validation of the design.
- VFTSw: Validation by functional testing of software functions.

Clause	Requirements	Validation Description	Passed	Failed				
3.6.2	Software identification (AD + VFTSw)							
	oftware identification and means of							
identificat								
Validate t	he presentation or display of the software							
	hat the software identification is							
	ly linked to the software							
3.6.3.1	Prevention misuse (AD + VFTSw)							
	Validate that possibilities of misuse are minimal.							
3.6.3.2								
	hat legally relevant software is secured							
	odification, loading or changes.							
	hat only clearly documented functions can							
	ed by the user interface.							
Validate p	protection/sealing that makes unauthorised							
	possible or evident.							
3.6.4	Parameter protection (AD + VFTSw)							
Validate t	hat legally relevant characteristics are							
	gainst unauthorised modification.							
	wing are considered as modifications to							
	elevant) device-specific parameters.							
	ng or changing the register for total energy							
check	ng or changing the event record of a ting facility.							
	hat the meter stops registering energy							
	lifying a (legally relevant) device-specific							
parameter								
	where applicable) a facility to record							
	ts to device-specific parameters.							
3.6.5	Separation of electronic devices and sub-	-assemblies (AD)						
	he legally relevant part(s) of the meter.							
	he separation. Metrologically critical parts							
	tricity meter – whether software or							
hardware parts – shall not be inadmissibly influenced by other parts of the meter.								
3.6.6 Separation of software (AD)								
	nd validate legally relevant software.							
Identify and validate figury fee valit software.								
relevant software and other software parts.								
Identify and validate documented interface								
commands and statement of completeness.								
3.6.7								
	Refer to clause 3.6.7 for applicability of these requirements.							
	hat measurement values stored or							
	d are accompanied by all information							
necessary	for future legally relevant use.							

Clause	Requirements	Validation Description	Passed	Failed
3.6.7.1.2	Data protection with respect to time of m	neasurement (AD + VFTSw)		
	hat software data protection with respect			
to time of	measurement.			
3.6.7.2	Automatic storing (AD + VFTSw)			
Validate a	utomatic storage of data.			
Validate s	ufficient permanency and memory for			
storage of				
Validate d	leletion of stored data.			
3.6.7.3.1	Transmission delay (AD + VFTSw)			
Validate t	hat measurement is not inadmissibly			
influenced	l by a transmission delay.			
3.6.7.3.2	Transmission interruption (AD + VFTS)	v)		
Validate r	neasurement data is not lost due to			
unavailab	ility of network services.			
3.6.7.4	Time stamp (AD + VFTSw)			
Validate t	hat time stamps are read from the clock of			
the device) .			
Validate t	hat setting of the clock is protected as a			
legally rel	evant parameter.			
3.6.8	Maintenance and re-configuration (AD)			
Identify a	nd validate the implementation for			
software u	ipdates.			

4 Tests for maximum permissible error

4.1 Initial intrinsic error for positive and negative flow (6.2.1)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

• If a meter is specified with alternate connection modes, this test shall be made for all specified connection modes.

Connection mode:

 I_X : testpoint specified by the national authority between I_{tr} and I_{max} :Value of most inductive power factor in test:Value of most capacitive power factor in test:

Positive energy f	low						
Test Current	Power Factor	Error (%) with te	st current from	Mean error ¹ (%)	Base m.p.e.		
(A)	rower ractor	Low to high	High to low	Wiedli error (70)	(%)		
I_{\min}	unity						
$I_{ m tr}$							
I_X							
$I_{\rm max}$							
$I_{ m tr}$	(most inductive)						
I_X							
$I_{\rm max}$							
$I_{ m tr}$	(most capacitive)						
I_X							
$I_{\rm max}$							
Negative energy flow							
$I_{ m tr}$	unity						
I _{max}							
Itr	(most inductive)						
I _{max}							
Itr	(most capacitive)						
I _{max}							

Note 1: Mean error is the mean of the error with increasing and decreasing currents for each testpoint.

• Check that each $|\text{mean error}| \le |\text{base m.p.e}|$

Passed

Failed

4.2 **Reverse energy flow (6.2.1)**

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

Cal	culation for test time for reverse flow	I _{min}	I _{max}
a)	Time that the test output would register ten pulses in the forward energy flow		
	direction (minutes):		
b)	Time that the primary register would register 2 units of the least significant digit in		
	the forward energy flow direction (minutes):		
c)	1 minute:	1	1
	Test time is the maximum of a), b) and c):		

Test Current	Power	Test Time	Change in r	egister	Number of tes	st pulses
(A)	Factor	(minutes)	Measured	Limit	Measured	Limit
I_{\min}	unity			0		1
$I_{\rm max}$						

Check that there is no change in the energy registered in the primary register.
Check that the number of test pulses emitted ≤ 1.

Failed

4.3 Self heating (6.2.2)

Observer: Temperature (°C): Date: Time (hh:mm);	Meter serial no.			At start	At end
Date: Time (hh:mm):	Observer:		Temperature (°C):		
	Date:		Time (hh:mm):		

Voltage circuits energised for time: (At least 1 hour for Class A, 2 hours for all other classes.)

• The test shall be carried out for at least 1 hour, and in any event until the variation of error over any 20-minute period does not exceed 10 % of base maximum permissible error.

Test current (A)	Power factor	Time at <i>I_{max}</i> (minutes)	Error (%)	Base m.p.e. (%)	Error shift (%)	Limit (%)
Imax	Unity	Intrinsic Error				

Has the error shift levelled out? If no	o, continue test according to (a) or (b) below.
---	---

(a) If the load can be changed in less than 30 seconds, then:

Test current (A)	Power factor	Intrinsic Error (%)	Error (%)	Base m.p.e. (%)	Error shift (%)	Limit (%)
Imax	0.5 inductive					

(b) Else, allow meter to return to its initial temperature and repeat test for power factor 0.5 inductive.

Voltage circuits energised for time: (At least 1 hour for Class A, 2 hours for all other classes.)

Test current (A)	Power factor	Time at <i>I_{max}</i> (minutes)	Error (%)	Base m.p.e. (%)	Error shift (%)	Limit (%)
Imax	0.5 inductive	Intrinsic Error				

• Check that each $|error| \le |base m.p.e|$

• Check that each $|error shift| \le |limit|$

Failed

Passed

OIML R 46-3:2013

4.4 Starting current (6.2.3)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

• Determine the error at the starting current based on the rate of test pulses (or revolutions if no test output).

Expected time betw							
Test current (A)	Base m.p.e. (%)						
	Unity						
• Check that the $ \text{error} \le \text{base m.p.e} $ Passed Failed							
Passed	Falleu						
Remarks:							

4.5 Test of no-load condition (6.2.4)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

Minimum test period, $\Delta t \ge 100 \times 10^3 / (b \cdot k \cdot m \cdot U_{nom} \cdot I_{min})$ hours:

Test current (A)		For meters wit	h a test output	For electromechanical meters		
	Test period Δt (hours)	Number of pulses emitted	Limit	Rotor revolutions	Limit	
	No current			1		Less than a complete revolution

- For meters with a test output, check if the number of pulses emitted ≤ 1 .
- For electromechanical meters, check that the rotor does not make a complete revolution.

Passed	Failed	
Remarks:		

4.6 Meter constants (6.2.5)

Meter serial no.	_		At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

Does the meter have multiple registers or pulse outputs under legal control? (Yes/No) If yes, is there a system in place to guarantee identical behaviour of meter constants? (Yes/No) If yes, specify the system, otherwise all registers and pulse outputs must be tested.

Register and test output tested:Apparent resolution of basic energy register, R expressed in Wh:Minimum energy to be passed through, $E_{\min} = 1000 \cdot R/b$ expressed in Wh:

Test current (A)	Power	Energy m	neasured by		Relative	Limit (%)	
		Register (r)	Test output (t)	Count of test output pulses	difference (%) $(t-r)/r$	(10% of base m.p.e.)	
	Unity						

• Check that each |relative difference| \leq |limit|

	Passed	Failed
--	--------	--------

5 Tests for influence quantities

5.1 Temperature dependence (6.3.2; Table 3)

Meter serial no.	
Observer:	
Date:	

	At start	At end
Temperature (°C):		
Time (hh:mm):		

• The mean temperature coefficient, c, is calculated by $c = (e_u - e_l)/(t_u - t_l)$.

- Temperature intervals shall span at least 15 K and no more than 23 K.
- The set of intervals must span the entire specified operating range (intervals may overlap).
- A temperature coefficients table must be completed for each temperature interval.

Temperature coefficients table		Temperature inte	erval (t_l to t_u): t_l (t_u	(°C):		
Test Current (A)	Power factor	Err	or (%)	Mean temperature	Mean temperature coefficient (%/K)		
Test Current (A)	Power factor	e_l	e_u	С	Limit		
$I_{ m tr}$	unity						
10 <i>I</i> _{tr}							
I _{max}							
$I_{ m tr}$	0.5 inductive						
10 <i>I</i> _{tr}							
I _{max}							

• Check that each $|c| \leq |\text{limit}|$.

Passed	1 40004
--------	---------

Failed

5.2 Load balance (6.3.3)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

This test is only for poly-phase meters and for single-phase three-wire meters.

• Reference voltages shall be applied to all voltage circuits

Test current (A)	Power factor	Load	Error (%)	Error shift (%)	Limit (%)
10 <i>I</i> tr	unity	Balanced			
		Current in L1 only			
		Current in L2 only			
	Current in L3 only				
I _{max}	unity	Balanced			
		Current in L1 only			
		Current in L2 only			
		Current in L3 only			
10 <i>I</i> tr	0.5 inductive	Balanced			
		Current in L1 only			
		Current in L2 only			
		Current in L3 only			
I _{max}	0.5 inductive	Balanced			
		Current in L1 only			
		Current in L2 only			
		Current in L3 only			

• Check that each $|\text{error shift}| \le |\text{limit}|$.

Passed

Failed

5.3 Voltage variation (6.3.4)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

• If several U_{nom} values are stated, the test shall be repeated for each U_{nom} value.

$U_{\rm nom}$ (V):					
Test current (A)	Power factor	Voltage variation	Error (%)	Error shift (%)	Limit (%)
10 <i>I</i> _{tr} unity		Reference (U_{nom})			
		$0.9 U_{\rm nom}$			
		$1.1 U_{\rm nom}$			
10 <i>I</i> _{tr}	0.5 inductive	Reference (U_{nom})			
		$0.9 U_{\rm nom}$			
		$1.1 U_{\rm nom}$			

• Check that each $|\text{error shift}| \le |\text{limit}|$.

	Passed	Γ		Failed
--	--------	---	--	--------

Remarks:

5.4 Frequency variations (6.3.5)

Meter serial no.	_		At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

• If several f_{nom} values are stated, the test shall be repeated for each f_{nom} value.

f_{nom} (Hz):					
Test current (A	A) Power factor	Frequency variation	Error (%)	Error shift (%)	Limit (%)
10 <i>I</i> _{tr}	unity	Reference (<i>f</i> _{nom})			
		$0.98 f_{\rm nom}$			
		$1.02 f_{\text{nom}}$			
$10 I_{\rm tr}$	0.5 inductive	Reference (<i>f</i> _{nom})			
		$0.98 f_{\rm nom}$			
		$1.02 f_{\text{nom}}$			

• Check that each $|\text{error shift}| \le |\text{limit}|$.

Failed

Passed

5.5 Harmonics in voltage and current (6.3.6)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

- Determine the error shift, relative to the error at reference conditions (with no harmonics), when the quadriform waveform (Table 11), is applied to both voltage and current circuits.
- Determine the error shift, relative to the error at reference conditions (with no harmonics), when the peaked waveform (Table 12), is applied to both voltage and current circuits.

Test current (A)	Power factor	Harmonics applied to both voltage and current circuits	Error (%)	Error shift (%)	Limit (%)
10 <i>I</i> tr	unity	Reference (<i>f</i> _{nom})			
		Quadriform waveform			
		Peaked waveform			

• Check that each $|\text{error shift}| \le |\text{limit}|$.

Passed	Failed		
Remarks:			

5.6 Tilt (6.3.7)

Meter serial no.		At start	At end
Observer:	Temperature (°C):		
Date:	Time (hh:mm):		

This test is only for electromechanical meters or meters of other constructions that may be influenced by the working position.

Operating position specified by manufacturer:	
Define or illustrate perpendicular orientations	
corresponding to forward, backward, left and	
right.	

Test current (A)	Power factor	Tilt	Error (%)	Error shift (%)	Limit (%)
$I_{ m tr}$	unity	Reference (no tilt)			
		3° forward			
		3° backward			
		3° left			
		3° right			

• Check that each $|\text{error shift}| \le |\text{limit}|$.

Passed

Failed

5.7 Severe voltage variations (6.3.8)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

• If several U_{nom} values are stated, the test shall be repeated for each U_{nom} value.

Test procedure 1

$U_{\rm nom}$ (V):					
Test current (A)	Power factor	Voltage variation	Error (%)	Error shift (%)	Limit (%)
10 <i>I</i> tr	unity	Reference (U_{nom})			
		$0.8 U_{\rm nom}$			
		$0.85 U_{\rm nom}$			
		1.15 U _{nom}			

Test procedure 2

Does the meter have distinct shut-down / turn-on voltages? (Yes/No)				
Shut-down voltage (V):				
Turn-on voltage (V):				
If yes, two additional mandatory testpoints (shutdown low and shutdown high) shall be included. Shutdown low shall be				

within a 2 V range below the shut-down voltage. *Shutdown high* shall be within a 2 V range above the turn-on voltage.

$U_{\rm nom}$ (V):					
Test current (A	A) Power factor	Voltage variation	Error (%)	Error shift (%)	Limit (%)
10 <i>I</i> tr	unity	Reference (U_{nom})			
		$0.7 U_{\rm nom}$			+10 to -100
		$0.6 U_{\rm nom}$			
		$0.5 U_{\rm nom}$			
		$0.4 U_{\rm nom}$			
		$0.3 U_{\rm nom}$			
		$0.2 U_{\rm nom}$			
		$0.1 U_{\rm nom}$			
		$0 U_{\text{nom}}$			
		shutdown low			
		shutdown high			

• Check that each $|\text{error shift}| \le |\text{limit}|$.

Passed	Failed		
Remarks:			

5.8 One or two phases interrupted (6.3.9)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

This test is only for poly-phase meters with three measuring elements

• One or two phases are removed while keeping the load current constant.

Test current (A)	Power factor	Load	Error (%)	Error shift (%)	Limit (%)
10 <i>I</i> _{tr}	unity	Reference (no phases removed)			
		Phase L1 removed			
		Phase L2 removed			
		Phase L3 removed			
		Phases L1, L2 removed			
		Phases L1, L3 removed			
		Phases L2, L3 removed			

• Check that each $|\text{error shift}| \le |\text{limit}|$.

	Passed
--	--------

Remarks:

5.9 Sub-harmonics in the AC current circuit (6.3.10)

Failed

Failed

Meter serial no.			At start	At end
Observer:	· · · ·	Temperature (°C):		
Date:	· · · ·	Time (hh:mm):		

• The sub-harmonic waveform is formed from a sinusoidal signal with twice the amplitude of the reference signal, which is switched on and off every second period (as shown in Figure 3 b)).

Test current (A)	Power factor	Current signal	Error (%)	Error shift (%)	Limit (%)
10 <i>I</i> _{tr}	unity	Reference (sinusoidal, f_{nom})			
		Sub-harmonic waveform			

• Check that each $|\text{error shift}| \le |\text{limit}|$.

	Passed		
--	--------	--	--

5.10 Harmonics in the AC current circuit (6.3.11)

Meter serial no.	
Observer:	Tem
Date:	Time

	At start	At end
Temperature (°C):		
Time (hh:mm):		

• The harmonic waveform is formed from a sinusoidal signal with twice the amplitude of the reference signal, which is set to zero during the first and third quarters of the period.

Test current (A	Power factor	Current signal	Error (%)	Error shift (%)	Limit (%)
10 <i>I</i> _{tr}	unity	Reference (sinusoidal, f_{nom})			
		Harmonic waveform			

• Check that each $|\text{error shift}| \le |\text{limit}|$.

Passed	Failed		
Remarks:			

5.11 Reversed phase sequence (any two phases interchanged) (6.3.12)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

• This test only applies to three-phase meters.

Test current (A)	Power factor	Phase sequence	Error (%)	Error shift (%)	Limit (%)
10 <i>I</i> _{tr}	unity	Reference (L1, L2, L3)			
		L1, L3, L2			
		L2, L1, L3			
		L3, L2, L1			

• Check that each $|\text{error shift}| \le |\text{limit}|$.

Passed	Failed	
Remarks:		

5.12 Continuous (DC) magnetic induction of external origin (6.3.13)

Meter serial no.		At start	At end
Observer:	Temperature (°C):		
Date:	Time (hh:mm):		

- Permanent magnet with a surface area of at least 2000 mm².
- Field along axis of magnet's core at 30 mm from surface: $200 \text{ mT} \pm 30 \text{ mT}$.
- 6 points per meter surface. Report greatest error shift for each surface.

Specify or illustrate the surfaces designated as front, back, top, bottom, left and right.

Test current (A)	Power factor	Meter surface tested	Error (%)	Error shift (%)	Limit (%)
10 <i>I</i> _{tr}	unity	Reference (no magnetic induction)			
		Front			
		Back			
		Тор			
		Bottom			
		Left			
		Right			

• Check that each $|\text{error shift}| \leq |\text{limit}|$.

Failed

5.13 Magnetic field (AC, power frequency) of external origin (6.3.14)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

- Continuous field, 400 A/m, $f = f_{nom}$
- Field at three orthogonal directions.
- Report greatest error shift for each test point and direction under the most unfavourable condition of phase.

Specify or illustrate the three orthogonal directions relative to the meter designated as x, y & z:

Test current (A)	Power factor	Magnetic field axis direction	Phase	Error (%)	Error shift (%)	Limit (%)
10 <i>I</i> tr	unity	Reference (no magnetic induction)	Reference (no magnetic induction)			
		x-axis				
		y-axis				
		z-axis				
I_{\max}	unity	Reference (no magnetic induction)				
		x-axis				
		y-axis				
		z-axis				

• Check that each $|error shift| \le |limit|$.

Passed

Failed

5.14 Radiated, radio frequency (RF), electromagnetic fields (6.3.15.1)

Meter serial no.	_		At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

Meters, such as electromechanical meters, which have been constructed using only passive elements shall be assumed to be immune to radiated radiofrequency fields.

Test Condition 1 – with current

- Frequency range: 80 to 6000 MHz
- Field strength: 10 V/m
- Modulation: 80% AM, 1 kHz sine wave
- The meter shall be separately tested at the manufacturer's specified clock frequencies.
- Any other sensitive frequencies shall also be analysed separately.
- Report greatest error shift for each test condition.

Test current (A)	Power factor	Antenna / facility	Frequency value / range (MHz)	Polariz- ation	Facing meter	Error shift (%)	Limit (%)
10 <i>I</i> _{tr}	unity			Vertical	Front		
					Back		
					Right		
					Left		
					Тор		
					Bottom		
				Horizontal	Front		
					Back		
					Right		
					Left		
					Тор		
					Bottom		
		[extend for each					
		antenna/facility]					
			[extend for clock				
			frequencies and any				
			other sensitive				
			frequencies]				

• Check that each $|\text{error shift}| \le |\text{limit}|$.

Passed

Failed

5.15 Immunity to Conducted Disturbances, Induced by Radiofrequency Fields (6.3.15.2)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

Meters, such as electromechanical meters, which have been constructed using only passive elements shall be assumed to be immune to conducted disturbances induced by RF fields.

- Frequency range: 0.15 to 80 MHz
- Field strength: 10 V (e.m.f.)
- Modulation: 80% AM, 1 kHz sine wave
- Test all power ports and I/O ports.
- Report greatest error shift for each test condition.

Test current (A)	Power factor	Power or I/O port	Error shift (%)	Limit (%)
10 <i>I</i> _{tr}	unity			

• Check that each $|\text{error shift}| \le |\text{limit}|$.

Passed

Remarks:

5.16 DC in the AC current circuit (6.3.16)

Failed

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

Electromechanical and transformer operated meters shall be assumed to be immune to DC in the AC current circuit.

Test current (A)	Power factor	Current test wave	Error (%)	Error shift (%)	Limit (%)
$I_{\rm max}/2\sqrt{2}$	unity	Sinusoidal (intrinsic error)			
$I_{\rm max}/\sqrt{2}$		Half-wave rectified			

• Check that each $|\text{error shift}| \le |\text{limit}|$.

Failed

Remarks:

Passed

5.17 High-order harmonics (6.3.17)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

- Asynchronous test signals, swept from $f = 15 f_{nom}$ to $40 f_{nom}$.
- Sweep from low frequency to high frequency, and then back down.
- One reading shall be taken per harmonic frequency (report maximum error within the frequency range).
- Report greatest error and error shift for each sweep.

Voltage Circuit Test

• Asynchronous test signal: 0.02 U_{nom}

Test current (A)	Power factor	Signal on voltage circuit	Sweep direction	Error (%)	Error shift (%)	Limit (%)
$I_{ m tr}$	unity	Sinusoidal (intrinsic error)				
		Test signal superimposed	low to high			
			high to low			

Current Circuit Test

• Asynchronous test signal: 0.1 *I*_{tr}

	Test current (A)	Power factor	Signal on current circuit	Sweep	Error (%)	Error shift (%)	Limit (%)
ſ	$I_{ m tr}$	unity	Sinusoidal (intrinsic error)				
			Test signal superimposed	low to high			
				high to low			

• Check that each $|error shift| \le |limit|$.

Passed

Failed

6 Test for disturbances

6.1 Critical change value (6.4.1 a); 3.3.6.2)

• The critical change value is used as a criterion for significant fault in many disturbance tests.

	8	
Number of measuring elements, m:		
Nominal voltage, U _{nom} :		V
Maximum current, <i>I</i> _{max} :		А
Critical change value $(m \cdot U_{nom} \cdot I_{max} \cdot 10^{-6})$:		kWh

6.2 Magnetic field (AC, power frequency) of external origin (6.4.2)

Meter serial no.	
Observer:	
Date:	

	At start	At end
Temperature (°C):		
Time (hh:mm):		

- Magnetic field strength short duration (3 s): 1000 A/m, $f = f_{nom}$
- Voltage circuits energised with *U*_{nom}.
- No current in the current circuits.
- Field at three orthogonal directions.

Specify the three orthogonal directions relative to the meter designated as x, y & z:

a) Check for significant fault (see critical change value in 6.1)

Magnetic field axis	Change in		Critical abanga valua
direction	Register	Equivalent energy of the test output	Critical change value
x-axis			
y-axis			
z-axis			

b) & c) Operational checks

Test current	Power	b) Operational check	c) Check corr	ect operation of
(A)	factor	Does meter register energy?	Pulse outputs?	Tariff change inputs?
	unity			

d) Check base m.p.e.

Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> _{tr}	0.5 inductive		

- Check that each |change in register| \leq critical change value.
- Check that each |change in equivalent energy of the test output| ≤ critical change value.
- Check all operational checks pass.
- Check that $|error| \le |base m.p.e.|$.

Passed

Failed

6.3 Electrostatic discharge (6.4.3)

Meter serial no.	_		At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

Meters, such as electromechanical meters, which have been constructed using only passive elements shall be assumed to be immune to electrostatic discharges.

- Contact discharge is the preferred test method. Air discharges shall be used where contact discharge cannot be applied.
- Voltage circuits energised with *U*_{nom}.
- Current and auxiliary circuits open, with no current.

a) Check for significant fault (see critical change value in 6.1)

Application	Discharge mode	Test voltage (kV)	Polarity	Number of discharges (≥ 10)	C Register	hange in Equivalent energy of the test output	Critical change value
Direct	Contact	8	Positive				
			Negative				
	Air	15	Positive				
			Negative				
Indirect, Horizontal	Contact	8	Positive				
coupling plane			Negative				
Indirect, Vertical	Contact	8	Positive				
coupling plane			Negative				

b) & c) Operational checks

ſ	Test current	Power	b) Operational check	c) Check corr	ect operation of
	(A)	factor	Does meter register energy?	Pulse outputs?	Tariff change inputs?
		unity			

d) Check base m.p.e.

Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> _{tr}	0.5 inductive		

• Check that each $|change in register| \leq critical change value.$

- Check that each |change in equivalent energy of the test output| \leq critical change value.
- Check all operational checks pass.
- Check that $|error| \le |base m.p.e.|$.

Passed

Failed

6.4 Fast transients (6.4.4)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

Meters, such as electromechanical meters, which have been constructed using only passive elements shall be assumed to be immune to fast transients.

- The test voltage shall be applied in common mode (line-to-earth) to:
 - a) the voltage circuits;
 - b) the current circuits, if separated from the voltage circuits in normal operation;
 - c) the auxiliary circuits, if separated from the voltage circuits in normal operation and with a reference voltage over 40 V.

a) Check for significant fault (limit of error shift)

Test current (A)	Power factor	Intrinsic Error (%)
10 <i>I</i> _{tr}	unity	

Test current (A)	Power factor	Circuit / Auxiliary circuit	Test Voltage (kV)	Error (%)	Error shift (%)	Limit of error shift (%)
10 <i>I</i> _{tr}	unity	Voltage	4			
		Current				
		[Auxiliary circuits]	2			
]			

b) & c) Operational checks

Test current	Power	b) Operational check	c) Check corr	ect operation of
(A)	factor	Does meter register energy?	Pulse outputs?	Tariff change inputs?
	unity			

d) Check base m.p.e.

[Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
	$I_{ m tr}$	unity		
ĺ	10 <i>I</i> _{tr}	0.5 inductive		

- Check that each $|\text{error shift}| \le |\text{limit of error shift}|$.
- Check all operational checks pass.
- Check that $|error| \le |base m.p.e.|$.

1 ubbeu

Failed

6.5 Voltage dips and interruptions (6.4.5)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

Meters, such as electromechanical meters, which have been constructed using only passive elements shall be assumed to be immune to voltage dips and interruptions.

- Voltage circuits energised with *U*_{nom}.
- Without current in the current circuit.

a) Check for significant fault (see critical change value in 6.1)

					Ch	ange in	Critical
Dip / Interruption	Test	Amplitude relative to U_{nom}	Duration (cycles)	Repetitions	Register	Equivalent energy of the test output	change value
Dip	Test a	30%	0.5	10			
	Test b	60%	1	10			
	Test c	60%	[25/30] ^[1]	10			
Interruption	-	0%	[250/300] ^[2]	10			

Note [1]: Duration (cycles) for Voltage Dip Test c depends on the reference frequency 25 for 50 Hz, 30 for 60 Hz.

Note [2]: Duration (cycles) for Voltage Interruption Test depends on the reference frequency 250 for 50 Hz, 300 for 60 Hz.

b) & c) Operational checks

Test current	Power	b) Operational check	c) Check corr	ect operation of
(A)	factor	Does meter register energy?	Pulse outputs?	Tariff change inputs?
	unity			

d) Check base m.p.e.

Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> _{tr}	0.5 inductive		

- Check that each $|change in register| \leq critical change value.$
- Check that each |change in equivalent energy of the test output| \leq critical change value.
- Check all operational checks pass.
- Check that $|error| \le |base m.p.e.|$.

Passed

Failed

6.6 Radiated, radio frequency (RF), electromagnetic fields (6.4.6)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

Meters, such as electromechanical meters, which have been constructed using only passive elements shall be assumed to be immune to radiated radiofrequency fields.

Test Condition 2 – without current

- Voltage circuits energised with U_{nom} , auxiliary circuits energized with reference voltage.
- Without current in the current circuits and with the current circuits open-circuited.
- Otherwise conditions as specified for the influence test with current in 5.14 above.

a) Check for significant fault (see critical change value in 6.1)

	Frequency value / range	Polariz-	Facing	Cha	ange in	Critical
Antenna	(MHz)	ation	meter	Register	Equivalent energy	change
	· · ·			U	of the test output	value
		Vertical	Front			
			Back			
			Right			
			Left			
			Тор			
			Bottom			
		Horizontal	Front			
			Back			
			Right			
			Left			
			Тор			
			Bottom			
[extend for each						
antenna]						
	[extend for clock					
	frequencies and any					
	other sensitive					
	frequencies]					

b) & c) Operational checks

Test current	Power	b) Operational check	c) Check correct operation of		
(A)	factor	Does meter register energy?	Pulse outputs?	Tariff change inputs?	
	unity				

d) Check base m.p.e.

Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> _{tr}	0.5 inductive		

- Check that each $|change in register| \leq critical change value.$
- Check that each |change in equivalent energy of the test output| ≤ critical change value.
- Check all operational checks pass.
- Check that $|error| \le |base m.p.e.|$.

Failed

Remarks:

33

6.7 Surges on AC mains power lines (6.4.7)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

This test is not applicable for meters such as electromechanical meters which shall be assumed to be immune to surges.

- Without any current in the current circuits and the current terminals open.
- Number of tests: 5 positive and 5 negative
- Repetition rate: maximum 1 per minute

a) Check for significant fault (see critical change value in 6.1)

				Change in		Critical
Amplitude (kV)	Application	Angle	Polarity	Register	Equivalent energy of the test output	change value
Voltage Circuits	Voltage Circuits					
2	Line to line	60°	Positive			
			Negative			
		240°	Positive			
			Negative			
4	Line to earth (¹⁾ 60°	Positive			
			Negative			
		240°	Positive			
			Negative			
Auxiliary Circui	ts with a referen	ce voltage over	40V (Repeat tal	ole below for ea	ach auxiliary circuit)	
Specify auxiliary	Circuit:					
1	Line to line	60°	Positive			
			Negative			
		240°	Positive			
			Negative			
2	Line to earth (¹⁾ 60°	Positive			
			Negative			
		240°	Positive			
			Negative			

⁽¹⁾ For cases where the earth of the meter is separate to neutral.

b) & c) Operational checks

Test current	Power	b) Operational check c) Check correct operation of		ect operation of
(A)	factor	Does meter register energy?	Pulse outputs?	Tariff change inputs?
	unity			

d) Check base m.p.e.

Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> _{tr}	0.5 inductive		

- Check that each |change in register| \leq critical change value.
- Check that each |change in equivalent energy of the test output| ≤ critical change value.
- Check all operational checks pass.
- Check that $|error| \le |base m.p.e.|$.

Failed

6.8 Damped oscillatory waves immunity test (6.4.8)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

This test is only for meters intended to be operated with voltage transformers.

• Test duration: 60 s (15 cycles with 2 s on, 2 s off, for each frequency)

a) Check for significant fault (limit of error shift)

Test current (A)	Power factor	Mode	Test Voltage (kV)	Test frequency (kHz)	Repetition rate (Hz)	Intrinsic Error (%)	Error (%)	Error shift (%)	Limit of error shift (%)	
Voltage Circuits										
$20 I_{\rm tr}$	unity	Common	2.5	100	40					
				1000	400					
	0.5			100	40					
	inductive			1000	400					
	unity	Differential	1.0	100	40					
				1000	400					
	0.5			100	40					
	inductive			1000	400					
	Auxiliary C	ircuits with a	reference v	oltage over 4)V (Repeat tal	ble below fo	r each au.	xiliary circi	uit)	
Specif	y auxiliary C	Circuit:								
$20 I_{\rm tr}$	unity	Common	2.5	100	40					
				1000	400					
	0.5			100	40					
	inductive			1000	400					
	unity	Differential	1.0	100	40					
				1000	400					
	0.5			100	40					
	inductive			1000	400					

b) & c) Operational checks

Test current	Power	b) Operational check	c) Check correct operation of	
(A)	factor	Does meter register energy?	Pulse outputs?	Tariff change inputs?
	unity			

d) Check base m.p.e.

Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> _{tr}	0.5 inductive		

• Check that each $|\text{error shift}| \le |\text{limit of error shift}|$.

- Check all operational checks pass.
- Check that $|error| \le |base m.p.e.|$.

Passed

Failed

6.9 Short-time overcurrent (6.4.9)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

- For direct connected meters: $30 I_{max} + 0\%$, -10% for one half cycle at rated frequency.
- For meters connected through current transformers: a current equivalent to $20 I_{max} + 0\%$, -10%, for 0.5 s.

a) Check for significant fault (limit of error shift)

Test current (A)	Power factor	Phase	Intrinsic Error (%)
10 <i>I</i> _{tr}	unity	L1	
		L2	
		L3	

		Applica	After return to normal temperature					
Test current (A)	Power factor	Phase	Short-time overcurrent (A)	Duration	Damage caused?	Error (%)	Error shift (%)	Limit of error shift (%)
10 <i>I</i> _{tr}	unity	L1						
		L2						
		L3						

b) & c) Operational checks

Test current	Power	b) Operational check	c) Check corr	ect operation of
(A)	factor	Does meter register energy?	Pulse outputs?	Tariff change inputs?
	unity			

d) Check base m.p.e.

Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> _{tr}	0.5 inductive		

- Check that each $|\text{error shift}| \le |\text{limit of error shift}|$.
- Check all operational checks pass.
- Check that $|error| \le |base m.p.e.|$.

Passed

Failed

6.10 Impulse Voltage (6.4.10)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

- For each test, the impulse voltage is applied 10 times for each polarity. Minimum of 30 s between impulses.
- Specify each circuit tested.

a) Check for significant fault (see critical change value in 6.1)

	Impulso			Flashover, disruptive	Cha	ange in	Critical	
Test	Impulse Voltage (V)	Polarity	Circuits tested	discharge or puncture?	Register	Equivalent energy of the test output	change value	
		Positive						
For circuits and								
between circuits		Negative						
Circuits relative		Positive						
to earth		Negative						

b) & c) Operational checks

Test current	Power	b) Operational check	c) Check correct operation of	
(A)	factor	Does meter register energy?	Pulse outputs?	Tariff change inputs?
	unity			

d) Check base m.p.e.

Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> _{tr}	0.5 inductive		

• Check that during the test, there is no flashover, disruptive discharge or puncture.

- Check that each $|change in register| \leq critical change value.$
- Check that each |change in equivalent energy of the test output| \leq critical change value.
- Check all operational checks pass.
- Check that $|error| \le |base m.p.e.|$.

Passed

Failed

Remarks:

37

6.11 Earth Fault (6.4.11)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

This test only applies to three-phase four-wire transformer-operated meters connected to distribution networks which are equipped with earth fault neutralizers or in which the star point is isolated.

- Simulated earth fault condition in one of the three lines.
- All voltages increased to $1.1 U_{nom}$.
- Duration: 4 hours.

a) Check for significant fault (limit of error shift)

Test current (A)	Power factor	Intrinsic Error (%)
10 <i>I</i> _{tr}	unity	

Earth-fault condition					After ret	urn to normal	temperature
Test current (A)	Power factor	Voltage (V)	Duration (hours)	Damage caused?	Error (%)	Error shift (%)	Limit of error shift (%)
10 <i>I</i> _{tr}	unity	$1.1 U_{\rm nom}$	4				

b) & c) Operational checks

Test current	Power	r b) Operational check c) Check corre		ect operation of
(A) factor Does meter register energy?		Pulse outputs?	Tariff change inputs?	
	unity			

d) Check base m.p.e.

Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> _{tr}	0.5 inductive		

• Check that after the test, the meter shows no damage.

- Check that each $|\text{error shift}| \leq |\text{limit of error shift}|$.
- Check all operational checks pass.
- Check that $|error| \le |base m.p.e.|$.

Passed

Failed

6.12 Operation of auxiliary devices (6.4.12)

Meter serial no.	
Observer:	Т
Date:	Т

	At start	At end
Temperature (°C):		
Time (hh:mm):		

• Error continuously monitored while auxiliary devices are operated.

a) Check for significant fault (limit of error shift)

Test current (A)	Power factor	Intrinsic Error (%)
Itr	unity	
I_{\max}		

Test current (A)	Power factor	Auxiliary Device	Error (%)	Error shift (%)	Limit of error shift (%)
$I_{ m tr}$	unity				
I _{max}					
$I_{ m tr}$					
I _{max}					

b) & c) Operational checks

Test current	Power	b) Operational check	c) Check corr	ect operation of
(A)	factor	Does meter register energy?	Pulse outputs?	Tariff change inputs?
	unity			

d) Check base m.p.e.

Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> _{tr}	0.5 inductive		

- Check that each $|\text{error shift}| \le |\text{limit of error shift}|$.
- Check all operational checks pass.
- Check that $|error| \le |base m.p.e.|$.

Passed

Failed

6.13 Vibrations (6.4.13.1)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

• Meter mounted as in normal operation.

• Vibrations applied, in turn, in three mutually perpendicular axes.

a) Check for significant fault (limit of error shift)

Test current (A)	Power factor	Intrinsic Error (%)
10 <i>I</i> _{tr}	unity	

	After vibrations applied						
Test current (A)	Power factor	Error (%)	Error shift (%)	Limit of error shift (%)			
10 <i>I</i> _{tr}	unity						

b) & c) Operational checks

Test current	Power	b) Operational check	c) Check correct operation of	
(A)	factor	Does meter register energy?	Pulse outputs?	Tariff change inputs?
	unity			

d) Check base m.p.e.

Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> tr	0.5 inductive		

• Check that each $|\text{error shift}| \le |\text{limit of error shift}|$.

Failed

- Check all operational checks pass.
- Check that $|error| \le |base m.p.e.|$.

Passed

6.14 Shock (6.4.13.2)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

• Meter not operational during tests.

a) Check for significant fault (limit of error shift)

Test current (A)	Power factor	Intrinsic Error (%)
10 <i>I</i> _{tr}	unity	

After shocks applied					
Test current (A)Power factorError (%)Error shift (%)Limit of error shift (%)					
10 <i>I</i> tr	unity				

b) & c) Operational checks

Test current	Power	b) Operational check c) Check correct operation of		ect operation of
(A)	factor	Does meter register energy?	Pulse outputs?	Tariff change inputs?
	unity			

d) Check base m.p.e.

Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> _{tr}	0.5 inductive		

- Check that each $|\text{error shift}| \leq |\text{limit of error shift}|$.
- Check all operational checks pass.
- Check that $|error| \le |base m.p.e.|$.

Passed

Failed

6.15 Protection against solar radiation (6.4.14)

Meter serial no.	
Observer:	Temperature (°C):
Date:	Time (hh:mm):

For outdoor meters only.

- Meter condition: non-operational during test.
- Partially mask a section of the meter for later comparison.
- Meter exposed to artificial radiation according to clause 6.4.14.

Visual inspection requirements after exposure						
Clause	Check for effects on	Remarks				
(3.5) Markings on the meter	Legibility and permanency of markings					
(3.6.1.2) Protection of metrological properties	Seals					
(3.7.1) Readability of result	Transparent surfaces on indicating device					
(3.7.1) Readability of result	Indicating device					
(3.3.6.2; Table 5) No alteration in appearance	Appearance					

b) & c) Operational checks

Test current Power		Power	b) Operational check		
	(A) factor		Does meter register energy?	Pulse outputs?	Tariff change inputs?
		unity			

d) Check base m.p.e.

Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> tr	0.5 inductive		

- Check that each visual inspection requirement is satisfied.
- Check all operational checks pass.
- Check that $|error| \le |base m.p.e.|$.

Passed

Failed

Remarks:

_

6.16 **Protection against ingress of dust (6.4.15)**

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

Visual inspection requirements after dust test		
Visually inspect interior of meter	Remarks	
Check if the talcum powder or other dust used in the test has		
accumulated in a quantity or location such that it could interfere		
with the correct operation of the equipment or impair safety.		
Check that no dust has deposited where it could lead to tracking		
along the creepage distances.		

b) & c) Operational checks

Test current Power		b) Operational check	c) Check correct operation of Pulse outputs? Tariff change input	
(A)	factor	Does meter register energy?	Pulse outputs?	Tariff change inputs?
	unity			

d) Check base m.p.e.

Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> tr	0.5 inductive		

• Check that each visual inspection requirement is satisfied.

- Check all operational checks pass.
- Check that $|error| \le |base m.p.e.|$.

Passed

Failed

6.17 Extreme temperatures - Dry Heat (6.4.16.1)

Meter serial no.		
Observer:		Tempe
Date:		Time (

	At start	At end
Temperature (°C):		
Time (hh:mm):		

• Meter condition: non-operational.

a) Check for significant fault (limit of error shift)

Test current (A)	Power factor	Intrinsic Error (%)
10 <i>I</i> tr	unity	

Dry Heat Test	
Test temperature (one step higher than upper specified temperature) (°C)	
Duration (hours)	2

After dry heat test					
Test current (A)Power factorError (%)Error shift (%)Limit of error shift (%)					
10 <i>I</i> tr	unity				

b) & c) Operational checks

Test current	Power	b) Operational check	c) Check correct operation of	
(A)	factor	Does meter register energy?	Pulse outputs?	Tariff change inputs?
	unity			

d) Check base m.p.e.

Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> _{tr}	0.5 inductive		

- Check that each $|\text{error shift}| \le |\text{limit of error shift}|$.
- Check all operational checks pass.
- Check that $|error| \le |base m.p.e.|$.

Passed

Failed

6.18 Extreme temperatures - Cold (6.4.16.2)

Meter serial no.		
Observer:	1	Temperatur
Date:		Time (hh:m

	At start	At end
Temperature (°C):		
Time (hh:mm):		

• Meter condition: non-operational.

a) Check for significant fault (limit of error shift)

Test current (A)	Power factor	Intrinsic Error (%)
10 <i>I</i> _{tr}	unity	

Cold Test	
Test temperature (one step lower than lower specified temperature) (°C)	
Duration (hours)	2

After cold test				
Test current (A)	Power factor	Error (%)	Error shift (%)	Limit of error shift (%)
10 <i>I</i> tr	unity			

b) & c) Operational checks

Test current	Power	b) Operational check	c) Check correct operation of	
(A)	factor	Does meter register energy?	Pulse outputs?	Tariff change inputs?
	unity			

d) Check base m.p.e.

Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> _{tr}	0.5 inductive		

- Check that each $|\text{error shift}| \le |\text{limit of error shift}|$.
- Check all operational checks pass.
- Check that $|error| \le |base m.p.e.|$.

Passed

Failed

6.19 Damp Heat, steady-state (non-condensing), for humidity class H1 (6.4.16.3)

Meter serial no.			At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

For humidity class H1 only.

- Voltage and auxiliary circuits energised with reference voltage.
- Without any current in the current circuits.

Damp Heat, steady-state test				
Temperature	30 °C			
Humidity	85 %			
Duration	2 days			

a) Check for significant fault (limit of error shift and see critical change value in 6.1)

Test current (A)	Power factor	Intrinsic Error (%)	
10 <i>I</i> _{tr}	Unity		

Change in	Register	
Change in	Equivalent energy of the test output	
Critical change value		

Immediately after the test, check error shift according to Table 5				
Test current (A)	Power factor	Error (%)	Error shift (%)	Limit of error shift (%)
10 <i>I</i> _{tr}	unity			

b) & c) Operational checks - 24 hours after the test

Test current	Power	b) Operational check	c) Check correct operation of	
(A)	factor	Does meter register energy?	Pulse outputs?	Tariff change inputs?
	unity			

d) Check base m.p.e. - 24 hours after the test

Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> _{tr}	0.5 inductive		

Checks for damage or corrosion - 24 hours after test

Requirement	Remarks
Check for evidence of any mechanical damage or corrosion	
which may affect the functional properties of the meter	

• Check that each $|change in register| \leq critical change value.$

• Check that each |change in equivalent energy of the test output| \leq critical change value.

• Check that $|\text{error shift}| \leq |\text{limit of error shift}|$ immediately after the test.

- Check all operational checks pass 24 hours after the test.
- Check that $|\text{error}| \le |\text{base m.p.e.}| 24$ hours after the test.
- Check that the requirements for damage or corrosion are satisfied.

Failed

Passed

Remarks:

46

6.20 Damp Heat, cyclic (condensing), for humidity class H2 and H3 (6.4.16.4)

Meter serial no.		
Observer:		Temperature (°C
Date:		Time (hh:mm):

	At start	At end
Temperature (°C):		
Time (hh:mm):		

For humidity class H2 or H3 only.

- Voltage and auxiliary circuits energised with reference voltage.
- Without any current in the current circuits.

Damp Heat, cyclic test			
Specified humidity class			
Lower temperature (°C)	25 °C		
Upper temperature (°C)			
Duration	2 cycles		

a) Check for significant fault (limit of error shift and see critical change value in 6.1)

Test current (A)	Power factor	Initial Error (%)
10 <i>I</i> _{tr}	Unity	

Change in	Register	
Change III	Equivalent energy of the test output	
Critical change value		

Immediately after the test, check error shift according to Table 5				
Test current (A)	Power factor	Error (%)	Error shift (%)	Limit of error shift (%)
10 <i>I</i> _{tr}	unity			

b) & c) Operational checks – 24 hours after the test

Test current	Power	b) Operational check	c) Check correct operation of	
(A)	factor	Does meter register energy?	Pulse outputs?	Tariff change inputs?
	unity			

d) Check base m.p.e. – 24 hours after the test

Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> _{tr}	0.5 inductive		

Checks for damage or corrosion – 24 hours after test

Requirement	Remarks
Check for evidence of any mechanical damage or corrosion	
which may affect the functional properties of the meter	

- Check that each $|change in register| \leq critical change value.$
- Check that each |change in equivalent energy of the test output| \leq critical change value.
- Check that $|\text{error shift}| \leq |\text{limit of error shift}|$ immediately after the test.
- Check all operational checks pass 24 hours after the test.
- Check that $|\text{error}| \le |\text{base m.p.e.}| 24$ hours after the test.
- Check that the requirements for damage or corrosion are satisfied.

Passed

Failed

6.21 Water test (6.4.16.5)

Meter serial no.	_		At start	At end
Observer:		Temperature (°C):		
Date:		Time (hh:mm):		

For humidity class H3 only.

• The meter shall be in functional mode, with no current.

	Water test
Flow rate (per nozzle):	0.07 L/min
Angle of inclination:	0° and 180°
Duration	10 minutes

a) Check for significant fault (see critical change value in 6.1)

Change in	Register	
Change III	Equivalent energy of the test output	
Critical chang		

Accuracy immediately after the test

Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> _{tr}	0.5 inductive		

b) & c) Operational checks - 24 hours after the test

Test current	Power	b) Operational check	c) Check correct operation of		
(A)	factor	Does meter register energy?	Pulse outputs?	Tariff change inputs?	
	unity				

d) Check base m.p.e. – 24 hours after the test

Test current (A)	Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> _{tr}	0.5 inductive		

Checks for damage or corrosion - 24 hours after test

Requirement	Remarks
Check for evidence of any mechanical damage or corrosion	
which may affect the functional properties of the meter	

• Check that each $|change in register| \leq critical change value.$

- Check that each |change in equivalent energy of the test output| \leq critical change value.
- Check that $|error| \le |base m.p.e.|$ immediately after the test.
- Check all operational checks pass 24 hours after the test.
- Check that $|error| \le |base m.p.e.| 24$ hours after the test.
- Check that the requirements for damage or corrosion are satisfied.

Failed

|--|

L

6.22 Durability (6.4.17)

Meter serial no.		At start	At end
Observer:	Temperature (°C):		
Date:	Time (hh:mm):		

Specify Durability Standard applied:

Specify details of durability test:

a) Check for significant fault (limit of error shift)

Test current (A)	Power factor	Intrinsic Error (%)
Itr	unity	
10 <i>I</i> tr	unity	
I _{max}	unity	

After durability						
Test current (A)	Power factor	Error (%)	Error shift (%)	Limit of error shift (%)		
$I_{ m tr}$	unity					
10 <i>I</i> tr	unity					
I _{max}	unity					

b) & c) Operational checks

Test current	Power	b) Operational check	c) Check correct operation of	
(A)	factor	Does meter register energy?	Pulse outputs?	Tariff change inputs?
	unity			

d) Check base m.p.e.

Test current (.	A) Power factor	Error (%)	Base m.p.e. (%)
$I_{ m tr}$	unity		
10 <i>I</i> _{tr}	0.5 inductive		

• Check that each $|\text{error shift}| \le |\text{limit of error shift}|$.

Failed

- Check all operational checks pass.
- Check that $|error| \le |base m.p.e.|$.

Passed