

Australian Government

Department of Industry, Science, Energy and Resources National Measurement Institute

# Proficiency Test Report AQA 20-05 Metals on Filters

July 2020

#### ACKNOWLEDGMENTS

This study was conducted by the National Measurement Institute (NMI). Support funding was provided by the Australian Government Department of Industry, Science, Energy and Resources.

I would like to thank the management and staff of the participating laboratories for supporting the study. It is only through widespread participation that we can provide an effective service to laboratories.

The assistance of the following NMI staff members in the planning, conduct and reporting of the study is acknowledged.

Luminita Antin Andrew Evans Luke Viskovic Hamish Lenton Daniel Khaziran

Raluca Iavetz Manager, Chemical Proficiency Testing

Phone: 61-2-9449 0111 proficiency@measurement.gov.au

# TABLE OF CONTENTS

| 1  | S   | JUMMARY                                                                    | 1  |
|----|-----|----------------------------------------------------------------------------|----|
| 2  | 11  | NTRODUCTION                                                                | 2  |
|    | 2.1 | NMI Proficiency Testing Program                                            | 2  |
|    | 2.2 | Study Aims                                                                 | 2  |
|    | 2.3 | Study Conduct                                                              | 2  |
| 3  | S   | STUDY INFORMATION                                                          | 2  |
|    | 3.1 | Selection of Matrices and Inorganic Analytes                               | 2  |
|    | 3.2 | Participation                                                              | 2  |
|    | 3.3 | Test Material Specification                                                | 3  |
|    | 3.4 | Laboratory Code                                                            | 3  |
|    | 3.5 | Sample Preparation, Analysis and Homogeneity Testing                       | 3  |
|    | 3.6 | Stability of Analytes                                                      | 3  |
|    | 3.7 | Sample Storage, Dispatch and Receipt                                       | 3  |
|    | 3.8 | Instructions to Participants                                               | 3  |
|    | 3.9 | Interim Report                                                             | 4  |
| 4  | Ρ   | PARTICIPANT LABORATORY INFORMATION                                         | 5  |
|    | 4.1 | Test Method Summaries                                                      | 5  |
|    | 4.2 | Instruments Used for Measurements                                          | 5  |
|    | 4.3 | Additional Information                                                     | 5  |
|    | 4.4 | Basis of Participants' Measurement Uncertainty Estimates                   | 6  |
|    | 4.5 | Participant Comments on this PT Study or Suggestions for Future Studies    | 7  |
| 5  | Ρ   | RESENTATION OF RESULTS AND STATISTICAL ANALYSIS                            | 8  |
|    | 5.1 | Results Summary                                                            | 8  |
| 6  | Т   | ABLES AND FIGURES                                                          | 10 |
| 7  | D   | DISCUSSION OF RESULTS                                                      | 48 |
|    | 7.1 | Assigned Value and Traceability                                            | 48 |
|    | 7.2 | Measurement Uncertainty Reported by Participants                           | 48 |
|    | 7.3 | E <sub>n</sub> -score                                                      | 49 |
|    | 7.4 | z-Score                                                                    | 49 |
|    | 7.5 | Participants' Results and Analytical Methods for Acid Extractable Elements | 52 |
|    | 7.6 | Reference Materials and Certified Reference Materials                      | 58 |
| 8  | R   | REFERENCES                                                                 | 59 |
| Al | PPE | NDIX 1 - SAMPLE PREPARATION, ANALYSIS AND HOMOGENEITY TESTING              | 61 |
| Al | PPE | NDIX 2 – HANLDING AND TRANSPORT STABILITY                                  | 70 |
| Al | PPE | NDIX 3 - ASSIGNED VALUE, Z-SCORE AND $E_N$ SCORE CALCULATION               | 71 |
| Al | PPE | NDIX 4 – ACRONYMS AND ABBREVIATIONS                                        | 72 |
| Al | PPE | NDIX 5 – PARTICIPANTS RESULTS                                              | 73 |
| AI | PPE | NDIX 6 - INSTRUMENT DETAILS                                                | 80 |

# 1 SUMMARY

This report presents the results of the proficiency test AQA 20-05 Metals on Filters. The study focused on the measurement of acid extractable elements: Ag, Al, As, Be, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, P, Pb, Se, Sn, U, V and Zn.

The sample set consisted of one sample, comprised of three filters.

Eleven laboratories registered to participate and all submitted results.

The assigned values were the robust average of participants' results. The associated uncertainties were estimated from the robust standard deviation of the participants' results.

The outcomes of the study were assessed against the aims as follows, to:

*i. compare the performance of participant laboratories and assess their accuracy;* 

Laboratory performance was assessed using both z-scores and E<sub>n</sub>-scores.

Of 136 results, all returned a satisfactory score of  $|z| \le 2.0$ .

Of 136 E<sub>n</sub>-scores, 106 (78%) were satisfactory with  $|E_n| \le 1.0$ .

*ii. evaluate the laboratories 'methods used in determination of inorganic analytes on filters;* 

The study sample was aimed at miming real life air filter samples which are routinely analysed by laboratories. As for routine air filter samples, the study sample required a good preparation/handling procedure to avoid material loss. The high number of satisfactory z-scores indicates that laboratories do not have difficulty with the measurement of inorganic analytes on air filters.

*iii.* develop the practical application of traceability and measurement uncertainty and provide participants with information that will be useful in assessing their uncertainty estimates;

Of 166 numerical results, 148 (89%) were reported with an expanded measurement uncertainty. The magnitude of these expanded uncertainties was within the range 1.3% to 125% of the reported value.

# 2 INTRODUCTION

# 2.1 NMI Proficiency Testing Program

The National Measurement Institute (NMI) is responsible for Australia's national measurement infrastructure providing a wide range of services, including a chemical proficiency testing program.

Proficiency testing (PT) "is evaluation of participant performance against pre-established criteria by means of interlaboratory comparison."<sup>1</sup> NMI PT studies target chemical testing in areas of high public significance such as trade, environment and food safety. NMI offers studies in:

- inorganic analytes in soil, water, food and pharmaceuticals;
- pesticide residues in fruit and vegetables, soil and water;
- petroleum hydrocarbons in soil and water;
- PFAS in water, soil, biota and food;
- allergens in food;
- controlled drug assay; and
- folic acid in flour.

AQA 20-05 is the first NMI proficiency study of inorganic analytes on filters.

# 2.2 Study Aims

The aims of the study were to:

- compare the performance of participant laboratories and assess their accuracy;
- evaluate the laboratories methods used in determination of inorganic analytes on filters;
- develop the practical application of traceability and measurement uncertainty.

# 2.3 Study Conduct

The conduct of NMI proficiency tests is described in the NMI Chemical Proficiency Testing Study Protocol.<sup>2</sup> The statistical methods used are described in the NMI Chemical Proficiency Statistical Manual.<sup>3</sup> These documents have been prepared with reference to ISO Standard 17043<sup>1</sup> and The International Harmonized Protocol for Proficiency Testing of (Chemical) Analytical Laboratories.<sup>4</sup>

NMI is accredited by National Association of Testing Authorities, Australia (NATA) to ISO/IEC 17043 as a provider of proficiency testing schemes. This proficiency test is not within the scope of NMI's accreditation.

The choice of the test method was left to the participating laboratories.

## **3 STUDY INFORMATION**

## 3.1 Selection of Matrices and Inorganic Analytes

The selection of the matrix and of the tests for this study was based on participants' expression of interest.

## 3.2 Participation

Eleven laboratories participated and all submitted results.

The timetable of the study was:

| Invitation issued:  | 04 March 2020 |
|---------------------|---------------|
| Samples dispatched: | 06 April 2020 |
| Results due:        | 11 May 2020   |

Interim report issued: 12 May 2020

# 3.3 Test Material Specification

One sample was provided for analysis:

• Sample S1 consisted of three loaded filters labelled AQA 20-05 S1A, AQA 20-05 S1B and AQA 20-05 S1C.

# 3.4 Laboratory Code

All participant laboratories were assigned a confidential code number.

## 3.5 Sample Preparation, Analysis and Homogeneity Testing

A full homogeneity test was conducted for Sample S1. Sample S1 was demonstrated to be sufficiently homogeneous for the evaluation of participants' performance.

The preparation, analysis and homogeneity testing of the study samples are described in Appendix 1.

## 3.6 Stability of Analytes

A handling and transport stability study was carried out prior to the dispatch of the samples. The test samples were stable during transport. The results of the stability study can be found in Appendix 2.

## 3.7 Sample Storage, Dispatch and Receipt

The test samples were stored at ambient temperature prior to dispatch

The samples were dispatched by courier on 6 April 2020.

The following items were packaged with the samples:

- a covering letter which included a description of the test samples and instructions for participants; and
- a form to confirm the receipt and condition of the samples.

An Excel spreadsheet for the electronic reporting of results was e-mailed to participants.

## 3.8 Instructions to Participants

Participants were instructed as follows:

- To handle the filters with care in order to avoid material loss, as no fixation or surface coating was applied. However, please note that a handling/transport stability study was conducted prior to sample dispatch.
- To remove the filter from the container by:
  - Gently tapping the lid of the PetriSlide to dislocate any particles stacked on the lid due to electrostatic charge.
  - Grasping the lid with the thumb and finger of one hand at the grip, whilst holding the bottom portion of the slide with the other hand.
  - Opening the lid with a slight upward twisting motion.
  - Picking up the filter membrane at the notched side using a tweezer.
  - Gently folding the filter and transferring it into a digestion tube.
- To analyse the filter as received.
- NOT to touch the surface of the filter containing the deposit.

- To use their normal method for acid extractable elements in fractions of airborne particulate matter loaded on filter media but to conduct analyses on the whole filter as received.
- To report results for each of the three filters in units of  $\mu g$ /filter. However, the average of the three results will be used for scoring.
- To report results using the electronic results sheet emailed to them with an associated expanded measurement uncertainty estimate. A brief summary of your test methods will also be requested.
- Return the completed results sheet via e-mail (proficiency@measurement.gov.au) by 11 May 2020.
- The approximate concentration range of the measurands in the test materials is: Ag >0.05 μg/filter, Al>50 μg/filter, As> 2.5 μg/filter, Be>0.003 μg/filter, Cd>0.1 μg/filter, Co>0.05 μg/filter, Cr>1μg/filter, Cu>1 μg/filter, Fe>50 μg/filter, Hg>0.1 μg/filter, Mn> 0.5 μg/filter, Ni>0.5 μg/filter, P>25 μg/filter, Pb>1 μg/filter, Se>0.05 μg/filter, Sn>0.1 μg/filter, U>0.005 μg/filter, V>1 μg/filter and Zn>0.5 μg/filter.

## 3.9 Interim Report

An interim report was emailed to participants on 12 May 2020.

# 4 PARTICIPANT LABORATORY INFORMATION

# 4.1 Test Method Summaries

Summaries of test methods are transcribed in Table 1.

| Lab.<br>Code | Method Reference                       | Whole<br>Filter<br>Used | Digestion<br>Temp.<br>(°C) | Digestion<br>Time<br>(min) | Vol.<br>HNO3<br>(mL) | Vol.<br>HCl<br>(mL) | Vol.<br>HNO3<br>(1:1)<br>(mL) | Vol.<br>HCl<br>(1:1)<br>(mL) | Vol.<br>H2O2<br>(mL) | Other<br>(mL)             |
|--------------|----------------------------------------|-------------------------|----------------------------|----------------------------|----------------------|---------------------|-------------------------------|------------------------------|----------------------|---------------------------|
| 1*           |                                        | Yes                     | 95 - 100                   | 90                         | 3                    | 1                   |                               |                              |                      |                           |
| 2*           | USEPA IO 3.1                           |                         | 95                         | 120                        |                      | 1                   | 4                             |                              |                      | 5 (H <sub>2</sub> O)      |
| 3            | NIOSH 7303                             | Yes                     | 90-98                      | 30                         | 3                    | 3                   |                               |                              |                      |                           |
| 4            | In House S6 – referencing APHA<br>3125 | Yes                     | 120                        | 60                         | 2.5                  | 7.5                 |                               |                              |                      |                           |
| 5            | NIOSH 7303                             | Yes                     | 90-98                      |                            | 3                    | 3                   |                               |                              |                      |                           |
| 6*           | AS 4479.2-1997, AS 4479.4-1999         | Yes                     | 97                         | 120                        | 2                    | 6                   |                               |                              |                      |                           |
| 7            | 200.8                                  | Yes                     | 95                         | 30                         | 2.5                  | 2.5                 |                               |                              |                      | 10<br>(H <sub>2</sub> O)  |
| 8            | NIOSH 7303                             | Yes                     | 90-98                      |                            | 1.5                  | 1.5                 |                               |                              |                      |                           |
| 9            | NIOSH Method 7303                      | Yes                     | 90                         | 60                         | 2.5                  | 0.5                 |                               |                              |                      | 2.0<br>(H <sub>2</sub> O) |
| 10*          | In house acid digestion                | Yes                     | 104                        | 60                         | 5                    | 1.5                 |                               |                              |                      |                           |
| 11           | In-house Method                        | Yes                     | 95                         | 60                         | 5                    |                     |                               |                              |                      |                           |

# Table 1 Methodology for Acid Extractable Elements

\*Additional information in Table 2

## 4.2 Instruments Used for Measurements

The instruments and settings used by participants for acid extractable elements are presented in Appendix 6.

## 4.3 Additional Information

Г

Participants had the option to report additional information for each sample analysed. These are transcribed in Table 2.

| Lab.<br>Code | Additional Information                                                                                                                                                                                             |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1            | Methodology for Acid Extractable Elements Step 2: 10 mL H <sub>2</sub> O at 95 - 100 °C for 30 minutes.                                                                                                            |  |  |
| 2            | S1: Our 1A had particulate deposited onto the storage cartridge that we were unable to successfully dislodge and believe it affected the results we determined so we have only reported the results for 1B and 1C. |  |  |
| 6            | S1: The results of Tin (Sn) were found to drop off from the solution. It has to analyse straight after sample extraction.                                                                                          |  |  |
| 10           | Filters digested with acid then diluted to 40 mL (0.04L). Samples analysed by MS and OES x1, x10 & x100. Reported results all taken from the x1 extract. Calculation to ug/filter = ppb $*$ 0.04.                  |  |  |

# 4.4 Basis of Participants' Measurement Uncertainty Estimates

Participants were requested to provide information about the basis of their uncertainty estimates (Table 3).

| Lab. Approach to Estimating MU |                                                                            | Information Sources                                                   | Guide Document for                                                                                                           |                        |
|--------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Code                           |                                                                            | Precision                                                             | Method Bias                                                                                                                  | Esumating MU           |
| 1                              | top down                                                                   | Duplicate Analysis                                                    | Instrument Calibration<br>Matrix Effects<br>Recoveries of SS                                                                 |                        |
| 2                              | Top Down - precision and<br>estimates of the method and<br>laboratory bias | Control Samples - CRM                                                 | CRM                                                                                                                          | NMI Uncertainty Course |
| 3                              | Top Down - precision and<br>estimates of the method and<br>laboratory bias | Control Samples                                                       | Recoveries of SS                                                                                                             | NATA Technical Note 33 |
| 4                              | Professional judgment                                                      | Control Samples<br>Duplicate Analysis                                 | Instrument Calibration<br>Standard Purity                                                                                    | Nordtest Report TR537  |
| 5                              | Top Down - precision and<br>estimates of the method and<br>laboratory bias | Control Samples                                                       | Recoveries of SS                                                                                                             | NATATechnical Note 33  |
| 6                              | Standard deviation of replicate analyses multiplied by 2 or 3              | Duplicate Analysis                                                    | CRM<br>Instrument Calibration<br>Matrix Effects<br>Laboratory Bias from<br>PT Studies<br>Recoveries of SS<br>Standard Purity | NATA Technical Note 33 |
| 7                              | Professional judgment                                                      | Control Samples - RM<br>Instrument Calibration                        | CRM<br>Instrument Calibration                                                                                                | Professional Judgement |
| 8                              | Top Down - precision and<br>estimates of the method and<br>laboratory bias | Control Samples                                                       | Recoveries of SS                                                                                                             | NATA Technical Note 33 |
| 9                              | Not applicable                                                             |                                                                       |                                                                                                                              |                        |
| 10                             | Top Down - precision and<br>estimates of the method and<br>laboratory bias | Control Samples - CRM<br>Duplicate Analysis<br>Instrument Calibration | CRM<br>Instrument Calibration<br>Matrix Effects<br>Laboratory Bias from<br>PT Studies<br>Recoveries of SS<br>Standard Purity | ISO/GUM                |
| 11                             | Top Down - precision and<br>estimates of the method and<br>laboratory bias | Control Samples - SS<br>Instrument Calibration                        | Instrument Calibration<br>Recoveries of SS                                                                                   | NATA Technical Note 33 |

Table 3 Basis of Uncertainty Estimate

<sup>a</sup>RM = Reference Material, CRM = Certified Reference Material, SS = Spiked samples

# 4.5 Participant Comments on this PT Study or Suggestions for Future Studies

The study co-ordinator welcomes comments or suggestions from participants about this study or possible future studies. Such feedback may be useful in improving future studies. Participants' comments are reproduced in Table 4.

| Lab<br>Code | Participants' Comments                                                                                                                       | Study Co-ordinator's Response                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6           | In the future study, if the samples can be pre-<br>folded, It can prevent any particle lost during<br>transferring into the digestion tubes. | Thank you for your suggestions. We run handling and transport<br>stability studies on the filter sample in different forms: packed folded in<br>PetriSlide, packed unfolded in PetriSlide and packed directly into<br>50 mL digestion tubes. All samples were stable during handling and<br>transport. We decided to go with the second option because it most<br>closely resembled the routine samples. |

| Table 4 | Participants' | Comments |  |
|---------|---------------|----------|--|
|         |               |          |  |

# 5 PRESENTATION OF RESULTS AND STATISTICAL ANALYSIS

### 5.1 Results Summary

Participant results are listed in Tables 5 to 23 with resultant summary statistics: robust average, median, maximum, minimum, robust standard deviation  $(SD_{rob})$  and robust coefficient of variation  $(CV_{rob})$ . Bar charts of results and performance scores are presented in Figures 2 to 20. An example chart with interpretation guide is shown in Figure 1.



Figure 1 Guide to Presentation of Results

# 5.2 Assigned Value

An example of an assigned value calculation using data from the present study is given in Appendix 3. The assigned value is defined as: 'the value attributed to a particular property of a proficiency test item.'<sup>1</sup> In this study the property is the mass fraction of analyte per filter. Assigned values were the robust average of participants' results; the expanded uncertainties were estimated from the associated robust standard deviations.

## 5.3 Robust Average

The robust averages and associated expanded measurement uncertainties were calculated using the procedure described in 'Statistical methods for use in proficiency testing by interlaboratory comparisons, ISO13528:2015(E)'.<sup>5</sup>

## 5.4 Robust Between-Laboratory Coefficient of Variation

The robust between-laboratory coefficient of variation (robust CV) is a measure of the variability of participants' results and was calculated using the procedure described in ISO13528:2015(E).<sup>5</sup>

# 5.5 Target Standard Deviation

The target standard deviation ( $\sigma$ ) is the product of the assigned value (*X*) and the performance coefficient of variation (PCV) as presented in Equation 1

 $\sigma = (X) * PCV$  Equation 1

This value is used for calculation of participant z-scores and provides scaling for laboratory deviation from the assigned value. It is important to note that the PCV is a fixed value and is not the standard deviation of participants' results. The fixed value set for PCV is based on the existing regulation, the acceptance criteria indicated by the methods, the matrix, the

concentration level of analyte and on experience from previous studies. It is backed up by mathematical models such as the Thompson Horwitz equation.<sup>6</sup> By setting a fixed and realistic value for the PCV, the participants' performance does not depend on other participants' performance and can be compared from study to study and against achievable performance.

# 5.6 z-Score

An example of z-score calculation using data from the present study is given in Appendix 3. For each participant's result, a z-score is calculated according to Equation 2 below:

$$z = \frac{(\chi - X)}{\sigma}$$
 Equation 2

where:

z is z-score

- $\chi$  is participants' result
- X is the study assigned value
- $\sigma$  is the target standard deviation
- A z-score with absolute value (|z|):
  - $|z| \le 2.0$  is satisfactory;
  - 2.0 < |z| < 3.0 is questionable;
  - $|z| \ge 3.0$  is unsatisfactory.

# 5.7 E<sub>n</sub>-Score

An example of  $E_n$ -score calculation using data from the present study is given in Appendix 3. The  $E_n$ -score is complementary to the z-score in assessment of laboratory performance.

En-score includes measurement uncertainty and is calculated according to Equation 3 below:

$$E_n = \frac{(\chi - X)}{\sqrt{U_{\chi}^2 + U_X^2}}$$
 Equation 3

where:

 $E_n$  is E<sub>n</sub>-score

- $\chi$  is a participants' result
- X is the assigned value

 $U_{\chi}$  is the expanded uncertainty of the participants' result

 $U_x$  is the expanded uncertainty of the assigned value

An  $E_n$ -score with absolute value ( $|E_n|$ ):

- $|E_n| \le 1.0$  is satisfactory;
- $|E_n| > 1.0$  is unsatisfactory.

# 5.8 Traceability and Measurement Uncertainty

Laboratories accredited to ISO/IEC Standard 17025:2018<sup>7</sup> must establish and demonstrate the traceability and measurement uncertainty associated with their test results. Guidelines for quantifying uncertainty in analytical measurement are described in the Eurachem/CITAC Guide.<sup>8</sup>

# 6 TABLES AND FIGURES

Table 5

#### Sample Details

| Sample No. | S1        |
|------------|-----------|
| Matrix.    | Filter    |
| Analyte.   | Ag        |
| Units      | µg/filter |

# **Participant Results**

| Lab Code | Result | Uncertainty |
|----------|--------|-------------|
| 1        | 0.086  | 0.017       |
| 2        | 0.0745 | 0.005       |
| 3        | <0.5   | NR          |
| 4        | 0.031  | 0.005       |
| 5        | <0.5   | NR          |
| 6        | <0.1   | NR          |
| 7        | 0.1    | 0.05        |
| 8        | <0.05  | NR          |
| 9        | 0.055  | NR          |
| 10       | 0.05   | 0.01        |
| 11       | NT     | NT          |

| Assigned Value       | Not Set |       |
|----------------------|---------|-------|
| Homogeneity<br>Value | 0.076   | 0.015 |
| Robust Average       | 0.066   | 0.029 |
| Median               | 0.065   | 0.028 |
| Mean                 | 0.066   |       |
| Ν                    | 6       |       |
| Max.                 | 0.1     |       |
| Min.                 | 0.031   |       |
| Robust SD            | 0.029   |       |
| Robust CV            | 44%     |       |

Results: S1 - Ag



Figure 2

| Sample No. | S1        |
|------------|-----------|
| Matrix.    | Filter    |
| Analyte.   | AI        |
| Units      | µg/filter |

# **Participant Results**

| Lab Code | Result | Uncertainty |
|----------|--------|-------------|
| 1        | 170    | 30          |
| 2        | 82     | 4.1         |
| 3        | 100    | 30          |
| 4        | 143    | 18          |
| 5        | 98     | 30          |
| 6        | 149    | 15          |
| 7        | 87     | 54          |
| 8        | 70     | 30          |
| 9        | 76     | NR          |
| 10       | 84.6   | 8.46        |
| 11       | NT     | NT          |

| Assigned Value       | Not Set |    |
|----------------------|---------|----|
| Homogeneity<br>Value | 95      | 19 |
| Robust Average       | 105     | 30 |
| Median               | 93      | 14 |
| Mean                 | 106     |    |
| Ν                    | 10      |    |
| Max.                 | 170     |    |
| Min.                 | 70      |    |
| Robust SD            | 38      |    |
| Robust CV            | 36%     |    |

Results: S1 - Al



Figure 3

| · ·        |           |
|------------|-----------|
| Sample No. | S1        |
| Matrix.    | Filter    |
| Analyte.   | As        |
| Units      | μg/filter |

# **Participant Results**

| Lab Code | Result | Uncertainty | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|---------|-----------------------|
| 1        | 7.3    | 1.5         | 1.54    | 1.13                  |
| 2        | 5      | 1           | -0.20   | -0.19                 |
| 3        | 6.4    | 2           | 0.86    | 0.51                  |
| 4        | 4.28   | 0.7         | -0.75   | -0.82                 |
| 5        | 5      | 2           | -0.20   | -0.12                 |
| 6        | 6.32   | 0.80        | 0.80    | 0.82                  |
| 7        | 6.5    | 1.6         | 0.93    | 0.65                  |
| 8        | 4      | 2           | -0.96   | -0.57                 |
| 9        | 4.7    | NR          | -0.43   | -0.58                 |
| 10       | 3.71   | 0.371       | -1.18   | -1.48                 |
| 11       | 4.8    | 1.2         | -0.36   | -0.30                 |

| Assigned Value       | 5.27       | 0.99 |
|----------------------|------------|------|
| Spike                | Not Spiked |      |
| Homogeneity<br>Value | 5.6        | 1.1  |
| Robust Average       | 5.27       | 0.99 |
| Median               | 5.0        | 1.0  |
| Mean                 | 5.27       |      |
| Ν                    | 11         |      |
| Max.                 | 7.3        |      |
| Min.                 | 3.71       |      |
| Robust SD            | 1.3        |      |
| Robust CV            | 25%        |      |













| Sample No. | S1        |
|------------|-----------|
| Matrix.    | Filter    |
| Analyte.   | Ве        |
| Units      | μg/filter |

# **Participant Results**

| Lab Code | Result | Uncertainty |
|----------|--------|-------------|
| 1        | <0.05  | NR          |
| 2        | 0.006  | 0.005       |
| 3        | <0.01  | NR          |
| 4        | 0.003  | 0.001       |
| 5        | <0.01  | NR          |
| 6        | <0.01  | NR          |
| 7        | 0.005  | 0.0003      |
| 8        | <0.01  | NR          |
| 9        | 0.005  | NR          |
| 10       | <0.02  | 0.005       |
| 11       | NT     | NT          |

| Assigned Value       | Not Set    |        |
|----------------------|------------|--------|
| Spike                | Not Spiked |        |
| Homogeneity<br>Value | 0.0057     | 0.0011 |
| Robust Average       | 0.0048     | 0.0018 |
| Median               | 0.0050     | 0.0012 |
| Mean                 | 0.0048     |        |
| Ν                    | 4          |        |
| Max.                 | 0.006      |        |
| Min.                 | 0.003      |        |
| Robust SD            | 0.0014     |        |
| Robust CV            | 29%        |        |

Results: S1 - Be



Figure 5

| Sample No. | S1        |
|------------|-----------|
| Matrix.    | Filter    |
| Analyte.   | Cd        |
| Units      | µg/filter |

# **Participant Results**

| Lab Code | Result | Uncertainty | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|---------|-----------------------|
| 1        | 0.51   | 0.10        | 1.37    | 1.16                  |
| 2        | 0.35   | 0.05        | -0.32   | -0.42                 |
| 3        | 0.4    | 0.3         | 0.21    | 0.07                  |
| 4        | 0.36   | 0.05        | -0.21   | -0.28                 |
| 5        | 0.4    | 0.2         | 0.21    | 0.10                  |
| 6        | 0.457  | 0.06        | 0.81    | 0.98                  |
| 7        | 0.43   | 0.022       | 0.53    | 0.90                  |
| 8        | 0.3    | 0.2         | -0.84   | -0.39                 |
| 9        | 0.34   | NR          | -0.42   | -0.78                 |
| 10       | 0.301  | 0.030       | -0.83   | -1.34                 |
| 11       | 0.36   | 0.17        | -0.21   | -0.11                 |

| Assigned Value       | 0.380      | 0.051 |
|----------------------|------------|-------|
| Spike                | Not Spiked |       |
| Homogeneity<br>Value | 0.411      | 0.082 |
| Robust Average       | 0.380      | 0.051 |
| Median               | 0.360      | 0.040 |
| Mean                 | 0.383      |       |
| Ν                    | 11         |       |
| Max.                 | 0.51       |       |
| Min.                 | 0.3        |       |
| Robust SD            | 0.067      |       |
| Robust CV            | 18%        |       |













| Sample No. | S1        |
|------------|-----------|
| Matrix.    | Filter    |
| Analyte.   | Со        |
| Units      | µg/filter |

# **Participant Results**

| Lab Code | Result | Uncertainty | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|---------|-----------------------|
| 1        | <0.05  | NR          |         |                       |
| 2        | 0.035  | 0.01        | 0.33    | 0.20                  |
| 3        | <0.5   | NR          |         |                       |
| 4        | 0.035  | 0.005       | 0.33    | 0.26                  |
| 5        | <0.5   | NR          |         |                       |
| 6        | 0.044  | 0.01        | 1.45    | 0.87                  |
| 7        | 0.033  | 0.003       | 0.09    | 0.07                  |
| 8        | <0.5   | NR          |         |                       |
| 9        | 0.023  | NR          | -1.15   | -1.02                 |
| 10       | 0.024  | 0.005       | -1.03   | -0.80                 |
| 11       | NT     | NT          |         |                       |

| Assigned Value       | 0.0323     | 0.0091 |
|----------------------|------------|--------|
| Spike                | Not Spiked |        |
| Homogeneity<br>Value | 0.0320     | 0.0064 |
| Robust Average       | 0.0323     | 0.0091 |
| Median               | 0.0340     | 0.0086 |
| Mean                 | 0.0323     |        |
| Ν                    | 6          |        |
| Max.                 | 0.044      |        |
| Min.                 | 0.023      |        |
| Robust SD            | 0.0089     |        |
| Robust CV            | 28%        |        |













| •          |           |
|------------|-----------|
| Sample No. | S1        |
| Matrix.    | Filter    |
| Analyte.   | Cr        |
| Units      | μg/filter |

# **Participant Results**

| Lab Code | Result | Uncertainty | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|---------|-----------------------|
| 1        | 7.6    | 1.5         | 1.46    | 1.13                  |
| 2        | 5.5    | 0.2775      | -0.05   | -0.07                 |
| 3        | 6.5    | 2           | 0.67    | 0.42                  |
| 4        | 4.54   | 0.6         | -0.74   | -0.90                 |
| 5        | 5.3    | 2           | -0.19   | -0.12                 |
| 6        | 6.89   | 0.80        | 0.95    | 1.04                  |
| 7        | 6.6    | 0.83        | 0.74    | 0.80                  |
| 8        | 4      | 2           | -1.13   | -0.70                 |
| 9        | 4.9    | NR          | -0.48   | -0.68                 |
| 10       | 4.35   | 0.435       | -0.88   | -1.14                 |
| 11       | 5.2    | 3.0         | -0.27   | -0.12                 |

| Assigned Value       | 5.57       | 0.98 |
|----------------------|------------|------|
| Spike                | Not Spiked |      |
| Homogeneity<br>Value | 6.3        | 1.3  |
| Robust Average       | 5.57       | 0.98 |
| Median               | 5.30       | 0.95 |
| Mean                 | 5.58       |      |
| Ν                    | 11         |      |
| Max.                 | 7.6        |      |
| Min.                 | 4          |      |
| Robust SD            | 1.3        |      |
| Robust CV            | 23%        |      |











Figure 8

| Sample No. | S1        |
|------------|-----------|
| Matrix.    | Filter    |
| Analyte.   | Cu        |
| Units      | µg/filter |

# **Participant Results**

| Lab Code | Result | Uncertainty | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|---------|-----------------------|
| 1        | 5.1    | 1.0         | 1.65    | 1.28                  |
| 2        | 3.4    | 0.1675      | -0.23   | -0.34                 |
| 3        | 4.3    | 1           | 0.76    | 0.59                  |
| 4        | 3.07   | 0.4         | -0.60   | -0.76                 |
| 5        | 3.4    | 2           | -0.23   | -0.10                 |
| 6        | 4.49   | 0.60        | 0.98    | 1.05                  |
| 7        | 3.8    | 0.19        | 0.21    | 0.31                  |
| 8        | 3      | 1           | -0.68   | -0.53                 |
| 9        | 3.1    | NR          | -0.57   | -0.86                 |
| 10       | 2.59   | 0.259       | -1.13   | -1.58                 |
| 11       | 3.8    | 2.0         | 0.21    | 0.09                  |

| Assigned Value       | 3.61       | 0.59 |
|----------------------|------------|------|
| Spike                | Not Spiked |      |
| Homogeneity<br>Value | 3.99       | 0.80 |
| Robust Average       | 3.61       | 0.59 |
| Median               | 3.40       | 0.40 |
| Mean                 | 3.64       |      |
| Ν                    | 11         |      |
| Max.                 | 5.1        |      |
| Min.                 | 2.59       |      |
| Robust SD            | 0.78       |      |
| Robust CV            | 22%        |      |













| Sample No. | S1        |
|------------|-----------|
| Matrix.    | Filter    |
| Analyte.   | Fe        |
| Units      | μg/filter |

# **Participant Results**

| Lab Code | Result | Uncertainty | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|---------|-----------------------|
| 1        | 330    | 70          | 1.45    | 1.06                  |
| 2        | 215    | 10.75       | -0.45   | -0.58                 |
| 3        | 299    | 90          | 0.94    | 0.57                  |
| 4        | 219    | 25          | -0.38   | -0.45                 |
| 5        | 250    | 90          | 0.13    | 0.08                  |
| 6        | 303    | 35          | 1.01    | 1.07                  |
| 7        | 260    | 65          | 0.30    | 0.23                  |
| 8        | 230    | 90          | -0.20   | -0.12                 |
| 9        | 210    | NR          | -0.53   | -0.71                 |
| 10       | 196    | 19.6        | -0.76   | -0.94                 |
| 11       | 140    | 37          | -1.69   | -1.75                 |

| Assigned Value       | 242        | 45 |
|----------------------|------------|----|
| Spike                | Not Spiked |    |
| Homogeneity<br>Value | 227        | 45 |
| Robust Average       | 242        | 45 |
| Median               | 230        | 30 |
| Mean                 | 241        |    |
| Ν                    | 11         |    |
| Max.                 | 330        |    |
| Min.                 | 140        |    |
| Robust SD            | 60         |    |
| Robust CV            | 25%        |    |







En-Scores: S1 - Fe





| Sample No. | S1        |
|------------|-----------|
| Matrix.    | Filter    |
| Analyte.   | Hg        |
| Units      | µg/filter |

# **Participant Results**

| Lab Code | Result | Uncertainty | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|---------|-----------------------|
| 1        | 0.38   | 0.08        | 1.05    | 0.87                  |
| 2        | 0.345  | 0.05        | 0.58    | 0.66                  |
| 3        | 0.34   | 0.2         | 0.52    | 0.19                  |
| 4        | 0.24   | 0.04        | -0.81   | -1.03                 |
| 5        | 0.32   | 0.1         | 0.25    | 0.17                  |
| 6        | 0.321  | 0.04        | 0.27    | 0.34                  |
| 7        | 0.31   | 0.004       | 0.12    | 0.20                  |
| 8        | 0.26   | 0.1         | -0.54   | -0.38                 |
| 9        | 0.25   | NR          | -0.68   | -1.16                 |
| 10       | 0.244  | 0.024       | -0.76   | -1.14                 |
| 11       | NT     | NT          |         |                       |

| Assigned Value       | 0.301      | 0.044 |
|----------------------|------------|-------|
| Spike                | Not Spiked |       |
| Homogeneity<br>Value | 0.325      | 0.065 |
| Robust Average       | 0.301      | 0.044 |
| Median               | 0.315      | 0.045 |
| Mean                 | 0.301      |       |
| Ν                    | 10         |       |
| Max.                 | 0.38       |       |
| Min.                 | 0.24       |       |
| Robust SD            | 0.056      |       |
| Robust CV            | 19%        |       |







En-Scores: S1 - Hg





| Sample No. | S1        |
|------------|-----------|
| Matrix.    | Filter    |
| Analyte.   | Mn        |
| Units      | μg/filter |

# **Participant Results**

| Lab Code | Result | Uncertainty | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|---------|-----------------------|
| 1        | 1.4    | 0.3         | 1.19    | 0.98                  |
| 2        | 1      | 0.05        | -0.30   | -0.57                 |
| 3        | 1.1    | 0.5         | 0.07    | 0.04                  |
| 4        | 1.11   | 0.2         | 0.11    | 0.13                  |
| 5        | 1.0    | 0.4         | -0.30   | -0.19                 |
| 6        | 1.32   | 0.15        | 0.89    | 1.21                  |
| 7        | 1.1    | 0.11        | 0.07    | 0.12                  |
| 8        | 1      | 0.4         | -0.30   | -0.19                 |
| 9        | 0.92   | NR          | -0.59   | -1.23                 |
| 10       | 0.956  | 0.096       | -0.46   | -0.77                 |
| 11       | <2.0   | NR          |         |                       |

| Assigned Value       | 1.08       | 0.13 |
|----------------------|------------|------|
| Spike                | Not Spiked |      |
| Homogeneity<br>Value | 1.10       | 0.22 |
| Robust Average       | 1.08       | 0.13 |
| Median               | 1.05       | 0.06 |
| Mean                 | 1.09       |      |
| Ν                    | 10         |      |
| Max.                 | 1.4        |      |
| Min.                 | 0.92       |      |
| Robust SD            | 0.16       |      |
| Robust CV            | 15%        |      |











Figure 12

| Sample No. | S1        |
|------------|-----------|
| Matrix.    | Filter    |
| Analyte.   | Ni        |
| Units      | µg/filter |

# **Participant Results**

| Lab Code | Result | Uncertainty | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|---------|-----------------------|
| 1        | 2.1    | 0.4         | 1.35    | 1.09                  |
| 2        | 1.8    | 0.5         | 0.59    | 0.40                  |
| 3        | 1.7    | 0.5         | 0.33    | 0.23                  |
| 4        | 1.41   | 0.2         | -0.41   | -0.46                 |
| 5        | 1.5    | 1           | -0.18   | -0.07                 |
| 6        | 1.93   | 0.20        | 0.92    | 1.05                  |
| 7        | 1.8    | 0.45        | 0.59    | 0.43                  |
| 8        | 1      | 0.7         | -1.45   | -0.76                 |
| 9        | 1.31   | NR          | -0.66   | -0.93                 |
| 10       | 1.26   | 0.126       | -0.79   | -1.01                 |
| 11       | 1.4    | 0.60        | -0.43   | -0.26                 |

| Assigned Value       | 1.57       | 0.28 |
|----------------------|------------|------|
| Spike                | Not Spiked |      |
| Homogeneity<br>Value | 1.69       | 0.34 |
| Robust Average       | 1.57       | 0.28 |
| Median               | 1.50       | 0.24 |
| Mean                 | 1.56       |      |
| Ν                    | 11         |      |
| Max.                 | 2.1        |      |
| Min.                 | 1          |      |
| Robust SD            | 0.37       |      |
| Robust CV            | 24%        |      |












| Sample No. | S1        |
|------------|-----------|
| Matrix.    | Filter    |
| Analyte.   | Р         |
| Units      | μg/filter |

## **Participant Results**

| Lab Code | Result | Uncertainty | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|---------|-----------------------|
| 1        | 86     | 17          | 0.97    | 0.85                  |
| 2        | 59     | 6           | -0.59   | -0.87                 |
| 3        | 81     | 30          | 0.68    | 0.37                  |
| 4        | 63.6   | 8.0         | -0.32   | -0.44                 |
| 5        | 62     | 30          | -0.42   | -0.23                 |
| 6        | 80.2   | 17          | 0.64    | 0.56                  |
| 7        | 75     | 94          | 0.34    | 0.06                  |
| 8        | 71     | 30          | 0.10    | 0.06                  |
| 9        | 63     | NR          | -0.36   | -0.62                 |
| 10       | 51.5   | 5.15        | -1.02   | -1.57                 |
| 11       | NT     | NT          |         |                       |

| Assigned Value       | 69         | 10 |
|----------------------|------------|----|
| Spike                | Not Spiked |    |
| Homogeneity<br>Value | 73         | 15 |
| Robust Average       | 69         | 10 |
| Median               | 67         | 8  |
| Mean                 | 69         |    |
| Ν                    | 10         |    |
| Max.                 | 86         |    |
| Min.                 | 51.5       |    |
| Robust SD            | 13         |    |
| Robust CV            | 19%        |    |











Figure 14

| Sample No. | S1        |
|------------|-----------|
| Matrix.    | Filter    |
| Analyte.   | Pb        |
| Units      | µg/filter |

## **Participant Results**

| Lab Code | Result | Uncertainty | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|---------|-----------------------|
| 1        | 5.0    | 1.0         | 1.59    | 1.25                  |
| 2        | 3.3    | 0.5         | -0.31   | -0.38                 |
| 3        | 3.9    | 1           | 0.36    | 0.28                  |
| 4        | 2.95   | 0.4         | -0.70   | -0.95                 |
| 5        | 3.4    | 2           | -0.20   | -0.09                 |
| 6        | 4.45   | 0.50        | 0.97    | 1.19                  |
| 7        | 3.7    | 0.46        | 0.13    | 0.17                  |
| 8        | 3      | 1           | -0.65   | -0.51                 |
| 9        | 3.1    | NR          | -0.54   | -0.91                 |
| 10       | 2.83   | 0.283       | -0.84   | -1.25                 |
| 11       | 4.1    | 1.3         | 0.58    | 0.37                  |

| Assigned Value       | 3.58       | 0.53 |
|----------------------|------------|------|
| Spike                | Not Spiked |      |
| Homogeneity<br>Value | 3.79       | 0.76 |
| Robust Average       | 3.58       | 0.53 |
| Median               | 3.40       | 0.45 |
| Mean                 | 3.61       |      |
| Ν                    | 11         |      |
| Max.                 | 5          |      |
| Min.                 | 2.83       |      |
| Robust SD            | 0.71       |      |
| Robust CV            | 20%        |      |













| -          |           |
|------------|-----------|
| Sample No. | S1        |
| Matrix.    | Filter    |
| Analyte.   | Se        |
| Units      | µg/filter |

# **Participant Results**

| Lab Code | Result | Uncertainty |
|----------|--------|-------------|
| 1        | <0.2   | NR          |
| 2        | <0.02  | 0.02        |
| 3        | <0.5   | NR          |
| 4        | 0.081  | 0.01        |
| 5        | <0.5   | NR          |
| 6        | <0.05  | NR          |
| 7        | 0.22   | 0.22        |
| 8        | <0.5   | NR          |
| 9        | <0.05  | NR          |
| 10       | 0.012  | 0.007       |
| 11       | NT     | NT          |

| Assigned Value       | Not Set    |       |
|----------------------|------------|-------|
| Spike                | Not Spiked |       |
| Homogeneity<br>Value | 0.010      | 0.003 |
| Median               | 0.08       | 0.25  |
| Mean                 | 0.10       |       |
| Ν                    | 3          |       |
| Max.                 | 0.22       |       |
| Min.                 | 0.012      |       |
| Robust SD            | 0.12       |       |
| Robust CV            | 120%       |       |

Results: S1 - Se



Figure 16

| Sample No. | S1        |
|------------|-----------|
| Matrix.    | Filter    |
| Analyte.   | Sn        |
| Units      | µg/filter |

## **Participant Results**

| Lab Code | Result | Uncertainty |
|----------|--------|-------------|
| 1        | 0.19   | 0.037       |
| 2        | 0.2    | 0.1         |
| 3        | <2     | NR          |
| 4        | 0.34   | 0.05        |
| 5        | <2     | NR          |
| 6        | 0.214  | 0.04        |
| 7        | 0.40   | 0.20        |
| 8        | <2     | NR          |
| 9        | 0.15   | NR          |
| 10       | 0.127  | 0.025       |
| 11       | NT     | NT          |

| Assigned Value       | Not Set    |       |
|----------------------|------------|-------|
| Spike                | Not Spiked |       |
| Homogeneity<br>Value | 0.190      | 0.038 |
| Robust Average       | 0.23       | 0.11  |
| Median               | 0.200      | 0.069 |
| Mean                 | 0.232      |       |
| Ν                    | 7          |       |
| Max.                 | 0.4        |       |
| Min.                 | 0.127      |       |
| Robust SD            | 0.11       |       |
| Robust CV            | 48%        |       |

Results: S1 - Sn



Figure 17

| Sample No. | S1        |
|------------|-----------|
| Matrix.    | Filter    |
| Analyte.   | U         |
| Units      | µg/filter |

## **Participant Results**

| Lab Code | Result | Uncertainty | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|---------|-----------------------|
| 1        | <0.05  | NR          |         |                       |
| 2        | <0.05  | 0.05        |         |                       |
| 3        | <0.5   | NR          |         |                       |
| 4        | 0.007  | 0.001       | -1.11   | -0.91                 |
| 5        | <0.5   | NR          |         |                       |
| 6        | 0.013  | 0.002       | 1.36    | 0.96                  |
| 7        | 0.01   | 0.0003      | 0.12    | 0.11                  |
| 8        | <0.5   | NR          |         |                       |
| 9        | 0.0087 | NR          | -0.41   | -0.36                 |
| 10       | 0.010  | 0.007       | 0.12    | 0.04                  |
| 11       | NT     | NT          |         |                       |

| Assigned Value       | 0.0097     | 0.0028 |
|----------------------|------------|--------|
| Spike                | Not Spiked |        |
| Homogeneity<br>Value | 0.0105     | 0.0021 |
| Robust Average       | 0.0097     | 0.0028 |
| Median               | 0.0100     | 0.0024 |
| Mean                 | 0.0097     |        |
| Ν                    | 5          |        |
| Max.                 | 0.013      |        |
| Min.                 | 0.007      |        |
| Robust SD            | 0.0025     |        |
| Robust CV            | 26%        |        |













| Sample No. | S1        |
|------------|-----------|
| Matrix.    | Filter    |
| Analyte.   | V         |
| Units      | µg/filter |

## **Participant Results**

| Lab Code | Result | Uncertainty | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|---------|-----------------------|
| 1        | 3.7    | 0.7         | 1.65    | 1.22                  |
| 2        | 2.5    | 0.07        | -0.18   | -0.22                 |
| 3        | 3.1    | 1           | 0.73    | 0.42                  |
| 4        | 2.06   | 0.4         | -0.85   | -0.83                 |
| 5        | 2.5    | 1           | -0.18   | -0.11                 |
| 6        | 3.28   | 0.44        | 1.01    | 0.95                  |
| 7        | 3.0    | 0.19        | 0.58    | 0.66                  |
| 8        | 2      | 0.8         | -0.95   | -0.64                 |
| 9        | 2.2    | NR          | -0.64   | -0.78                 |
| 10       | 1.88   | 0.188       | -1.13   | -1.29                 |
| 11       | NT     | NT          |         |                       |

| Assigned Value       | 2.62       | 0.54 |
|----------------------|------------|------|
| Spike                | Not Spiked |      |
| Homogeneity<br>Value | 3.06       | 0.61 |
| Robust Average       | 2.62       | 0.54 |
| Median               | 2.50       | 0.53 |
| Mean                 | 2.62       |      |
| Ν                    | 10         |      |
| Max.                 | 3.7        |      |
| Min.                 | 1.88       |      |
| Robust SD            | 0.69       |      |
| Robust CV            | 26%        |      |







En-Scores: S1 - V





| Sample No. | S1        |
|------------|-----------|
| Matrix.    | Filter    |
| Analyte.   | Zn        |
| Units      | µg/filter |

## **Participant Results**

| Lab Code | Result | Uncertainty | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|---------|-----------------------|
| 1        | 1.8    | 0.4         | 1.14    | 0.77                  |
| 2        | 1.4    | 0.07        | 0.00    | 0.00                  |
| 3        | <5     | NR          |         |                       |
| 4        | 1.28   | 0.2         | -0.34   | -0.31                 |
| 5        | <5     | NR          |         |                       |
| 6        | 1.81   | 0.20        | 1.17    | 1.06                  |
| 7        | 1.7    | 0.43        | 0.86    | 0.55                  |
| 8        | <5     | NR          |         |                       |
| 9        | 1.10   | NR          | -0.86   | -0.91                 |
| 10       | 0.996  | 0.099       | -1.15   | -1.17                 |
| 11       | 1.1    | 0.37        | -0.86   | -0.61                 |

| Assigned Value       | 1.40       | 0.33 |
|----------------------|------------|------|
| Spike                | Not Spiked |      |
| Homogeneity<br>Value | 1.41       | 0.28 |
| Robust Average       | 1.40       | 0.33 |
| Median               | 1.34       | 0.36 |
| Mean                 | 1.40       |      |
| Ν                    | 8          |      |
| Max.                 | 1.81       |      |
| Min.                 | 0.996      |      |
| Robust SD            | 0.38       |      |
| Robust CV            | 27%        |      |













## 7 DISCUSSION OF RESULTS

## 7.1 Assigned Value and Traceability

**Assigned Values** of the inorganic analytes in the study sample S1 were the robust averages of participants' results. The robust averages used as assigned values and their associated expanded uncertainties were calculated using the procedure described in 'Statistical methods for use in proficiency testing by interlaboratory comparisons, ISO13528:2015(E)'.<sup>5</sup> Appendix 3 sets out the calculation for the robust average of Cr in Sample S1 and its associated uncertainty.

No assigned value was set for Ag, Be and Se in S1 because too few results were reported. However, participants may still compare their reported results for these elements with the median or robust average of participants' results and the homogeneity value. No assigned value was also set for Al and Sn in S1 because the results were too variable.

**Traceability** The assigned value is not traceable to any external reference; it is traceable to the consensus of participants' results deriving from a variety of measurement methods and (presumably) a variety of calibrators. So although expressed in SI units, the metrological traceability of the assigned values has not been established.

## 7.2 Measurement Uncertainty Reported by Participants

Participants were asked to report an estimate of the expanded measurement uncertainty associated with their results. Of 166 numerical results, 148 (89%) were reported with an expanded measurement uncertainty. The magnitude of these expanded uncertainties was within the range 1.3% to 125% of the reported value. The participants used a wide variety of procedures to estimate the expanded measurement uncertainty. These are presented in Table 3.

Approaches to estimating measurement uncertainty include: standard deviation of replicate analysis, Horwitz formula, professional judgement, bottom up approach, top down approach using precision and estimates of method and laboratory bias and top down approach using only the reproducibility from inter-laboratory comparisons studies.<sup>8–14</sup>

Proficiency tests allow a check of the reasonableness of uncertainty estimates. Results and the expanded MU are presented in the bar charts for each analyte (Figure 2 to 20). In this study, the reported expanded measurement uncertainty has been over-estimated in some cases (e.g. Lab 3 for Cd in S1) or under-estimated (e.g. Lab 10 for As in S1). As a simple rule of thumb, when the uncertainty estimate is either smaller than the assigned uncertainty value or larger than the uncertainty of the assigned value plus twice the target standard deviation then this should be reviewed as suspect.

Double counting the precision uncertainty components and overestimation of the laboratory or method bias are the most common error seen in the laboratories' estimated uncertainty budgets. According to General Accreditation Guidance, Estimating and reporting measurement uncertainty of chemical test results<sup>11</sup> and to NORDTEST TR 537,8 the most common sources used to estimate the precision component are from:

- Stable <u>control samples</u> that cover the whole analytical process (including extraction) and **have a matrix similar** to the samples; **or**
- Stable <u>control samples</u> **and** <u>duplicate analyses</u> if control samples do not cover whole analytical process (e.g. the control sample is a synthetic sample we have to take into consideration uncertainties arising from different matrices); **or**
- When control samples are not stable, from analysis of <u>natural duplicates</u> (gives withinday variation for sampling and measurement) and long-term uncertainty component from the variation in the <u>instrument calibration</u>; **or**

• <u>Replicate analyses</u> performed on the same sample at different times to obtain estimates of intermediate precision; within-batch replication provides estimates of repeatability only.

The most common sources for estimating the method bias component for the measurement uncertainty calculation are from:

- Certified reference material recoveries; or
- Participation in PT studies (laboratory bias from at least 6 successful PT studies) ; or
- From sample spike recoveries.

When a laboratory has successfully participated in at least 6 proficiency testing studies, the standard deviation from proficiency testing studies only, can also be used to estimate the uncertainty of their measurement results.<sup>9, 11</sup>

Laboratories 2 and 10 attached estimates of the expanded measurement uncertainty to results reported as less than their limit of detection. An estimate of uncertainty expressed as a value cannot be attached to a result expressed as a range.<sup>8</sup>

Laboratory 7 reported an estimate of expanded uncertainty for their P measurement result larger than the result itself.

In some cases the results were reported with an inappropriate number of significant figures. The recommended format is to write uncertainty to no more than two significant figures and then to write the result with the corresponding number of decimal places. For example, instead of 239.87  $\pm$  44.96 µg/filter, it is better to report 240  $\pm$  45 µg/filter or instead of 9910  $\pm$  1486.50 µg/filter, it is better to report 9910  $\pm$  1500 µg/filter.<sup>8</sup>

# 7.3 E<sub>n</sub>-score

 $E_n$ -score should be interpreted only in conjunction with z-scores. The  $E_n$ -score indicates how closely a result agrees with the assigned value taking into account the respective uncertainties. An unsatisfactory  $E_n$  score for an analyte can either be caused by an inappropriate measurement, an inappropriate estimation of measurement uncertainty, or both.

The dispersal of participants'  $E_n$ -scores is graphically presented in Figure 21. Where a laboratory did not report an expanded uncertainty with a result, an expanded uncertainty of zero (0) was used to calculate the  $E_n$ -score.

Of 136 results for which  $E_n$ -scores were calculated, 106 (78%) returned a satisfactory score of  $|E_n| \le 1.0$  indicating agreement of the participants' results with the assigned values within their respective expanded measurement uncertainties.

# 7.4 z-Score

The z-score compares the participant's deviation from the assigned value with the target standard deviation set for proficiency assessment.

The target standard deviation defines satisfactory performance in a proficiency test. This was the first study to be conducted by NMI for metals on filters and potentially the first study for many participants in which they could check their methods for measurement of inorganic analytes in air filters. A target standard deviation equivalent to 25% performance coefficient of variation (PCV) was used to calculate z-scores.

The between-laboratory coefficient of variation predicted by the Thompson equation<sup>6</sup> and the participants' coefficient of variation in this study are presented for comparison in Table 24. The set target deviation of 25% was found to be in good agreement with laboratories' coefficients of variation and with the coefficient of variation predicted by Thomson for most analytes of interest.

The dispersal of participants' z-scores is presented in Figure 22 (by laboratory code) and in Figure 23 (by test). Of 136 results for which z-scores were calculated, all returned a satisfactory score of  $|z| \le 2.0$ .





Figure 22 z-Score Dispersal by Laboratory



Figure 23 z-Score Dispersal by Test

| Sample | Test | Assigned value<br>(µg/filter) | Between<br>Laboratories<br>CV | Thompson/<br>Horwitz CV | Target SD<br>(as CV) |
|--------|------|-------------------------------|-------------------------------|-------------------------|----------------------|
| S1     | Ag   | 0.066*                        | 44%                           | 22%                     | Not Set              |
| S1     | Al   | 105*                          | 36%                           | 20%                     | Not Set              |
| S1     | As   | 5.27                          | 25%                           | 22%                     | 25%                  |
| S1     | Be   | 0.0048*                       | 29%                           | 22%                     | Not Set              |
| S1     | Cd   | 0.380                         | 18%                           | 22%                     | 25%                  |
| S1     | Со   | 0.0323                        | 28%                           | 22%                     | 25%                  |
| S1     | Cr   | 5.57                          | 23%                           | 22%                     | 25%                  |
| S1     | Cu   | 3.61                          | 22%                           | 22%                     | 25%                  |
| S1     | Fe   | 242                           | 25%                           | 20%                     | 25%                  |
| S1     | Hg   | 0.301                         | 19%                           | 22%                     | 25%                  |
| S1     | Mn   | 1.08                          | 15%                           | 22%                     | 25%                  |
| S1     | Ni   | 1.57                          | 24%                           | 22%                     | 25%                  |
| S1     | Р    | 69                            | 19%                           | 22%                     | 25%                  |
| S1     | Pb   | 3.58                          | 20%                           | 22%                     | 25%                  |
| S1     | Se   | 0.08*                         | 120%                          | 22%                     | Not Set              |
| S1     | Sn   | 0.185*                        | 48%                           | 22%                     | Not Set              |
| S1     | U    | 0.0097                        | 26%                           | 22%                     | 25%                  |
| S1     | V    | 2.62                          | 26%                           | 22%                     | 25%                  |
| S1     | Zn   | 1.40                          | 27%                           | 22%                     | 25%                  |

Table 24 Between Laboratory CV of this Study, Thompson CV and Set Target SD

\*Robust Average

## 7.5 Participants' Results and Analytical Methods for Acid Extractable Elements

The study's test sample consisted of three filter papers, each loaded with the same amount of air particulate matter. Participants were assessed on the average of the three measurements. Laboratories were advised as follows: "...report results for each of the three filters in units of  $\mu g/$ filter. However, the average of the three results will be used for scoring." A summary of participants' results and performance is presented in Table 25 and in Figures 22 and 23. Participants' results reported for each filter are presented in Appendix 5.

The study sample was aimed at mimick real life air filter samples which are routinely analysed by laboratories. As for routine air filter samples, the study sample required a good preparation/handling procedure as no fixation or surface coating was applied to avoid material loss. Of 136 reported results for which z-scores were calculated, all returned a satisfactory score indicating that laboratories do not have difficulty with the preparation of air filters.

The method descriptions provided by participants are presented in Table 1 while the instrumental conditions are presented in Appendix 6.

No laboratory used diluted HCl and H<sub>2</sub>O<sub>2</sub>.

With the exception of one, all laboratories used both  $HNO_3$  and HCl. Laboratory 11 used  $HNO_3$  only.

Laboratory 2 reported using HCl and diluted HNO<sub>3</sub>.

Laboratory 1 digested the filter samples in two steps, with step 2 involving the addition of 10 mL water and further sample digestion at 95°C-100°C for 30 minutes.

Laboratories 7 and 3 extracted their sample at 95°C -100°C for 30 min only.

The most popular method was the NIOSH Method 7303 which involves a digestion temperature close to  $95^{\circ}$ C and a ratio of HNO<sub>3</sub> to HCl of 1 to 1.

| Lab<br>Code | S1-Ag<br>µg/filter | S1-Al<br>µg/filter | S1-As<br>µg/filter | S1-Be<br>µg/filter | S1-Cd<br>µg/filter | S1-Co<br>μg/filter | S1-Cr<br>µg/filter | S1-Cu<br>µg/filter | S1-Fe<br>µg/filter | S1-Hg<br>µg/filter |
|-------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| H.V.        | 0.076              | 95                 | 5.6                | 0.0057             | 0.411              | 0.0320             | 6.3                | 3.99               | 227                | 0.325              |
| A.V.        | Not Set            | Not Set            | 5.27               | Not Set            | 0.380              | 0.0323             | 5.57               | 3.61               | 242                | 0.301              |
| 1           | 0.086              | 170                | 7.3                | < 0.05             | 0.51               | < 0.05             | 7.6                | 5.1                | 330                | 0.38               |
| 2           | 0.0745             | 82                 | 5                  | 0.006              | 0.35               | 0.035              | 5.5                | 3.4                | 215                | 0.345              |
| 3           | <0.5               | 100                | 6.4                | < 0.01             | 0.4                | <0.5               | 6.5                | 4.3                | 299                | 0.34               |
| 4           | 0.031              | 143                | 4.28               | 0.003              | 0.36               | 0.035              | 4.54               | 3.07               | 219                | 0.24               |
| 5           | <0.5               | 98                 | 5                  | < 0.01             | 0.4                | <0.5               | 5.3                | 3.4                | 250                | 0.32               |
| 6           | < 0.1              | 149                | 6.32               | < 0.01             | 0.457              | 0.044              | 6.89               | 4.49               | 303                | 0.321              |
| 7           | 0.1                | 87                 | 6.5                | 0.005              | 0.43               | 0.033              | 6.6                | 3.8                | 260                | 0.31               |
| 8           | < 0.05             | 70                 | 4                  | < 0.01             | 0.3                | <0.5               | 4                  | 3                  | 230                | 0.26               |
| 9           | 0.055              | 76                 | 4.7                | 0.005              | 0.34               | 0.023              | 4.9                | 3.1                | 210                | 0.25               |
| 10          | 0.05               | 84.6               | 3.71               | < 0.02             | 0.301              | 0.024              | 4.35               | 2.59               | 196                | 0.244              |
| 11          | NT                 | NT                 | 4.8                | NT                 | 0.36               | NT                 | 5.2                | 3.8                | 140                | NT                 |

Table 25 Summary of Participants' Results and Performance for Acid Extractable Elements in Sample S1

A.V. = Assigned Value, H.V. = Homogeneity Value

| Lab<br>Code | S1-Mn<br>µg/filter | S1-Ni<br>µg/filter | S1-P<br>µg/filter | S1-Pb<br>µg/filter | S1-Se<br>µg/filter | S1-Sn<br>µg/filter | S1-U<br>µg/filter | S1-V<br>µg/filter | S1-Zn<br>µg/filter |
|-------------|--------------------|--------------------|-------------------|--------------------|--------------------|--------------------|-------------------|-------------------|--------------------|
| H.V.        | 1.10               | 1.69               | 73                | 3.79               | 0.010              | 0.190              | 0.0105            | 3.06              | 1.41               |
| A.V.        | 1.08               | 1.57               | 69                | 3.58               | Not Set            | Not Set            | 0.0097            | 2.62              | 1.40               |
| 1           | 1.4                | 2.1                | 86                | 5.0                | <0.2               | 0.19               | < 0.05            | 3.7               | 1.8                |
| 2           | 1                  | 1.8                | 59                | 3.3                | < 0.02             | 0.2                | < 0.05            | 2.5               | 1.4                |
| 3           | 1.1                | 1.7                | 81                | 3.9                | <0.5               | <2                 | < 0.5             | 3.1               | <5                 |
| 4           | 1.11               | 1.41               | 63.6              | 2.95               | 0.081              | 0.34               | 0.007             | 2.06              | 1.28               |
| 5           | 1.0                | 1.5                | 62                | 3.4                | <0.5               | <2                 | <0.5              | 2.5               | <5                 |
| 6           | 1.32               | 1.93               | 80.2              | 4.45               | < 0.05             | 0.214              | 0.013             | 3.28              | 1.81               |
| 7           | 1.1                | 1.8                | 75                | 3.7                | 0.22               | 0.40               | 0.01              | 3.0               | 1.7                |
| 8           | 1                  | 1                  | 71                | 3                  | <0.5               | <2                 | <0.5              | 2                 | <5                 |
| 9           | 0.92               | 1.31               | 63                | 3.1                | < 0.05             | 0.15               | 0.0087            | 2.2               | 1.10               |
| 10          | 0.956              | 1.26               | 51.5              | 2.83               | 0.012              | 0.127              | 0.010             | 1.88              | 0.996              |
| 11          | <2.0               | 1.4                | NT                | 4.1                | NT                 | NT                 | NT                | NT                | 1.1                |

Table 25 Summary of Participants' Results and Performance for Acid Extractable Elements in Sample S1 (continued)

A.V. = Assigned Value, H.V. = Homogeneity Value

The high number of satisfactory results reported for scored analytes demonstrates that participants' results are comparable and therefore indicates that they use methods which provide equivalent results for these tests. However, no agreement was found between the results reported for Al and Sn and no assigned value could be set for these elements.

**Aluminium** The between-laboratory coefficient of variation for Al in Sample S1 was high (36%), and larger than that predicted by Thomson (20%).<sup>6</sup> This element is known to be strongly dependent on the digestion regime.

High Al results were from by digestion regimes that involved a high digestion temperature (120°C) and/or longer digestion time (90 min to 120 min) (Figure 26).

**Cobalt** level in Sample S1 was low (0.0323  $\mu$ g/filter) and this might have presented difficulty to some laboratories. The between laboratory coefficient of variation was high (28%). Plots of participants' results versus instrumental technique used are presented in Figure 24.





**Selenium** level in Sample S1 was below the reporting level of most participating laboratories. Only three results were reported for this test: one from ICP-MS in standard mode, one from ICP-MS-CRI measurements with high energy He as collision gas and one from ICP-OES measurements with ultrasonic nebuliser. Se level in S1 might be too low for ICP-OES-USN measurements. Figure 25 presents plots of participants results versus technique used.



S1 Se Results vs. Methodology

H.V. Homogeneity Value



Figure 26: S1-Al Results vs. Methodology



Figure 27: S1-Sn Results vs. Methodology

**Tin** results were variable (CV 48%) and no assigned value could be set for this test. Laboratory 6 reported:" The results of Tin (Sn) were found to drop off from the solution. It has to analyse straight after sample extraction."

Tin dissolves in hydrochloric acid with the formation of tin(II) (stannous) salts and in dilute nitric acid with the formation of tin(II) and ammonium ions. When nitric acid concentration in solution is high a white insoluble precipitate of hydrated tin(IV) oxide (SnO<sub>2.</sub>xH<sub>2</sub>O) is formed. It is recommended to keep the prepared sample in 5 mol/L HCl. SnCl<sub>4</sub> is highly volatile so the solution should not be further heated.<sup>15,16,17</sup>

Plots of participants' results versus the extraction regime used are presented in Figure 27.

**Cadmium, Mercury, Manganese and Phosphorus** were the tests that presented the least analytical difficulty to participating laboratories with a between laboratory CV of less than 20%.

## 7.6 Reference Materials and Certified Reference Materials

Participants reported whether control samples (spiked samples, certified reference materials-CRMs or matrix specific reference materials-RMs) had been used (Table 26).

| Lab. Code | Description of Control Samples |
|-----------|--------------------------------|
| 2         | Certified Reference Material   |
| 7         | Reference Material             |
| 10        | Certified Reference Material   |
| 11        | Spiked Sample                  |

Table 26 Control Samples Used by Participants

Matrix matched control samples taken through all steps of the analytical process, are most valuable quality control tools for assessing the methods' performance.

Some laboratories reported using certified reference materials. These materials may not meet the internationally recognised definition of a Certified Reference Material:

**'a reference material**, accompanied by documentation issued by an authoritative body and providing one or more specified property values with associated uncertainties and traceabilities, using valid procedures'<sup>18</sup>

### 8 **REFERENCES**

[1] ISO17043:2010, Conformity assessment – *General requirements for proficiency testing*.

[2] NMI, *NMI Chemical Proficiency Testing Study Protocol*, viewed June 2020, <a href="http://www.measurement.gov.au">http://www.measurement.gov.au</a>>.

[3] NMI, *NMI Chemical Proficiency Testing Statistical Manual*, viewed June 2020, <a href="http://www.measurement.gov.au">http://www.measurement.gov.au</a>>.

[4] Thompson, M, Ellison, S & Wood, R 2006, 'The international harmonized protocol for proficiency testing of (chemical) analytical laboratories', *Pure Appl. Chem*, vol 78, pp 145-196.

[5] ISO13528:2015(E), *Statistical methods for use in proficiency testing by interlaboratory comparisons.* 

[6] Thompson, M 2000, Recent trends in inter-laboratory precision at ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing, *Analyst*, vol 125, pp 385-386.

[7] ISO/IEC 17025:2018, General requirements for the competence of testing and calibration laboratories

[8] Eurachem 2012, *Quantifying uncertainty in Analytical Measurement*, 3<sup>rd</sup> edition, viewed June 2020,

<http://www.eurachem.org/images/stories/Guides/pdf/QUAM2012\_P1.pdf>.

[9] Betil, M, Naykki, T, Hovind, H & Krysell, M 2004, *Nordtest Report Handbook for Calculation of Measurement Uncertainty in Environmental Laboratories*, Nordest Tekniikantie, Finland, Esopo.

[10] Hibbert, B 2007, *Quality Assurance for the Analytical Chemistry Laboratory*, Oxford University Press.

[11] NATA 2018, General Accreditation Guidance Estimating and Reporting Measurement Uncertainty of Chemical Test Results

[12] ISO (2008), *Guide to the Expression of Uncertainty in Measurement (GUM)*, Geneva, Switzerland.

[13] Eurolab 2002, Technical Report No 1/2002 - Measurement Uncertainty in Testing.

[14] NMI, *Estimating Measurement Uncertainty for Chemists* – viewed March 2017, <<u>www.measurement.gov.au</u>>.

[15] Svehla G. 1997, *Vogel's qualitative inorganic analysis revised by G Svehla, sixth edition,* Longman Scientific & Technical New York.

[16] Patraik P, Dean J. A 2004, *Dean's analytical chemistry manual*, The Mc Graw Hill professional New York.

[17] Commision Directive 2004, 2004/16/EC of 12 February 2004 laying down the sampling methods and the methods of analysis for the official control of the levels of tin in foodstuffs, Official Journal of the European Union., L42/16.

[18] JCGM 200:2008, International vocabulary of metrology – Basic and general concepts and associated terms (VIM), 3<sup>rd</sup> edition

[19] Susan F. Heller-Zeisler 1998, Examination of a procedure for the production of a simulated filter-based air particulate matter reference material, *Fresenius J Anal Chem.* 360:435-438

## **APPENDIX 1 - SAMPLE PREPARATION, ANALYSIS AND HOMOGENEITY TESTING**

### **Sample Preparation**

**Sample S1** consisted of three filters labelled S1A, S1B and S1C, each loaded with the same amount of simulated air particulate matter. The preparation procedure was based on the paper published by Susan F. Heller-Zeisler.<sup>19</sup> Samples were spiked by dispensing an equal amount of a liquid suspension of a fortified, ground and sieved soil reference material onto a quartz filter mounted on a vacuum filtration unit. After filtering to dryness, the filters were allowed to air dry under a clean air flow cabinet. Each filter was mounted into a PetriSlide container.

#### Sample Analysis and Homogeneity Testing

Homogeneity testing was conducted for the elements of interest. Six samples (each consisting of three filters analysed separately) were analysed and the average of the results was reported as the homogeneity value.

Since the entire sample was used in each analysis, it was not possible to apply analysis of variance (ANOVA) to determine if samples were sufficiently homogeneous. When it is not possible to conduct replicate measurements, the standard deviation of the results (sd) will be compared with the target standard deviation of the PT ( $\sigma$ ) calculated as described in section 5.5. The proficiency test samples may be considered sufficiently homogeneous if: sd  $\leq 0.3 \sigma$ .<sup>5</sup>

Data from the homogeneity testing is presented in the tables below. The between sample sd as CV was between 3% to 7% less than 30% of the target standard deviation as CV set for this study (25%).  $^{5}$ 

The samples were found to be sufficiently homogeneous for the evaluation of participants' performance.

| Filter ID                          | Filter A Result<br>(µg/filter) | Filter B Result<br>(µg/filter) | Filter C Result<br>(µg/filter) | Average Result<br>(µg/filter) |
|------------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|
| Sample 1<br>(Filter 14A, 9B, 10C)  | 6.1                            | 5.6                            | 4.5                            | 5.4                           |
| Sample 2<br>(Filter 25A, 18B, 13C) | 5.1                            | 7.3                            | 5.2                            | 5.9                           |
| Sample 3<br>(Filter 24A, 2B, 20C)  | 5.1                            | 6.6                            | 5.1                            | 5.6                           |
| Sample 4<br>(Filter 19A, 25B, 11C) | 5.4                            | 6.0                            | 4.5                            | 5.3                           |
| Sample 5<br>(Filter 5A, 13B, 7C)   | 4.9                            | 6.8                            | 6.4                            | 6.0                           |
| Sample 6<br>(Filter 3A, 22B, 14C)  | 4.4                            | 5.3                            | 6.1                            | 5.3                           |
|                                    |                                |                                | <b>Overall Average</b>         | 5.6                           |
|                                    |                                |                                | CV                             | 5%                            |

Table 27 Homogeneity Testing of As in Sample S1

|    |       | Critical            |        |
|----|-------|---------------------|--------|
|    | Value | (<30% of Target CV) | Result |
| CV | 5%    | 7.5%                | Pass   |

| Filter ID                          | Filter A Result<br>(µg/filter) | Filter B Result<br>(µg/filter) | Filter C Result<br>(µg/filter) | Average Result<br>(µg/filter) |
|------------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|
| Sample 1<br>(Filter 14A, 9B, 10C)  | 0.458                          | 0.400                          | 0.320                          | 0.393                         |
| Sample 2<br>(Filter 25A, 18B, 13C) | 0.370                          | 0.553                          | 0.360                          | 0.428                         |
| Sample 3<br>(Filter 24A, 2B, 20C)  | 0.380                          | 0.477                          | 0.391                          | 0.416                         |
| Sample 4<br>(Filter 19A, 25B, 11C) | 0.400                          | 0.458                          | 0.362                          | 0.407                         |
| Sample 5<br>(Filter 5A, 13B, 7C)   | 0.362                          | 0.490                          | 0.477                          | 0.443                         |
| Sample 6<br>(Filter 3A, 22B, 14C)  | 0.334                          | 0.370                          | 0.430                          | 0.378                         |
|                                    |                                |                                | <b>Overall Average</b>         | 0.411                         |
|                                    |                                |                                | CV                             | 6%                            |

Table 28 Homogeneity Testing of Cd in Sample S1

|    |       | Critical            |        |
|----|-------|---------------------|--------|
|    | Value | (<30% of Target CV) | Result |
| CV | 6%    | 7.5%                | Pass   |

| Filter ID                          | Filter A Result<br>(µg/filter) | Filter B Result<br>(µg/filter) | Filter C Result<br>(µg/filter) | Average Result<br>(µg/filter) |
|------------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|
| Sample 1<br>(Filter 14A, 9B, 10C)  | 0.0346                         | 0.0310                         | 0.0240                         | 0.0299                        |
| Sample 2<br>(Filter 25A, 18B, 13C) | 0.0290                         | 0.0428                         | 0.0280                         | 0.0333                        |
| Sample 3<br>(Filter 24A, 2B, 20C)  | 0.0280                         | 0.0382                         | 0.0291                         | 0.0318                        |
| Sample 4<br>(Filter 19A, 25B, 11C) | 0.0300                         | 0.0364                         | 0.0291                         | 0.0318                        |
| Sample 5<br>(Filter 5A, 13B, 7C)   | 0.0273                         | 0.0420                         | 0.0364                         | 0.0352                        |
| Sample 6<br>(Filter 3A, 22B, 14C)  | 0.0264                         | 0.0280                         | 0.0350                         | 0.0298                        |
|                                    |                                |                                | <b>Overall Average</b>         | 0.0320                        |
|                                    |                                |                                | CV                             | 6%                            |

Table 29 Homogeneity Testing of Co in Sample S1

|    |       | Critical            |        |
|----|-------|---------------------|--------|
|    | Value | (<30% of Target CV) | Result |
| CV | 6%    | 7.5%                | Pass   |

| Filter ID                          | Filter A Result<br>(µg/filter) | Filter B Result<br>(µg/filter) | Filter C Result<br>(µg/filter) | Average Result<br>(µg/filter) |
|------------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|
| Sample 1<br>(Filter 14A, 9B, 10C)  | 7.2                            | 6.3                            | 4.7                            | 6.1                           |
| Sample 2<br>(Filter 25A, 18B, 13C) | 5.5                            | 9.2                            | 5.6                            | 6.8                           |
| Sample 3<br>(Filter 24A, 2B, 20C)  | 5.6                            | 7.5                            | 5.9                            | 6.3                           |
| Sample 4<br>(Filter 19A, 25B, 11C) | 6.1                            | 7.2                            | 5.2                            | 6.2                           |
| Sample 5<br>(Filter 5A, 13B, 7C)   | 5.3                            | 7.7                            | 7.5                            | 6.9                           |
| Sample 6<br>(Filter 3A, 22B, 14C)  | 4.9                            | 5.7                            | 6.8                            | 5.8                           |
|                                    |                                |                                | <b>Overall Average</b>         | 6.3                           |
|                                    |                                |                                | CV                             | 7%                            |

Table 30 Homogeneity Testing of Cr in Sample S1

|    |       | Critical            |        |
|----|-------|---------------------|--------|
|    | Value | (<30% of Target CV) | Result |
| CV | 7%    | 7.5%                | Pass   |

| Filter ID                          | Filter A Result<br>(µg/filter) | Filter B Result<br>(µg/filter) | Filter C Result<br>(µg/filter) | Average Result<br>(µg/filter) |
|------------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|
| Sample 1<br>(Filter 14A, 9B, 10C)  | 4.44                           | 4.00                           | 3.10                           | 3.85                          |
| Sample 2<br>(Filter 25A, 18B, 13C) | 3.60                           | 5.25                           | 3.60                           | 4.15                          |
| Sample 3<br>(Filter 24A, 2B, 20C)  | 3.60                           | 4.62                           | 3.62                           | 3.95                          |
| Sample 4<br>(Filter 19A, 25B, 11C) | 3.81                           | 4.44                           | 3.35                           | 3.87                          |
| Sample 5<br>(Filter 5A, 13B, 7C)   | 3.44                           | 5.00                           | 4.71                           | 4.38                          |
| Sample 6<br>(Filter 3A, 22B, 14C)  | 3.17                           | 3.70                           | 4.40                           | 3.76                          |
|                                    |                                |                                | Overall Average                | 3.99                          |
|                                    |                                |                                | CV                             | 6%                            |

Table 31 Homogeneity Testing of Cu in Sample S1

|    |       | Critical            |        |
|----|-------|---------------------|--------|
|    | Value | (<30% of Target CV) | Result |
| CV | 6%    | 7.5%                | Pass   |

| Filter ID                          | Filter A Result<br>(µg/filter) | Filter B Result<br>(µg/filter) | Filter C Result<br>(µg/filter) | Average Result<br>(µg/filter) |
|------------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|
| Sample 1<br>(Filter 14A, 9B, 10C)  | 224                            | 260                            | 200                            | 228                           |
| Sample 2<br>(Filter 25A, 18B, 13C) | 230                            | 273                            | 230                            | 244                           |
| Sample 3<br>(Filter 24A, 2B, 20C)  | 230                            | 238                            | 189                            | 219                           |
| Sample 4<br>(Filter 19A, 25B, 11C) | 196                            | 231                            | 175                            | 201                           |
| Sample 5<br>(Filter 5A, 13B, 7C)   | 168                            | 330                            | 238                            | 245                           |
| Sample 6<br>(Filter 3A, 22B, 14C)  | 161                            | 240                            | 280                            | 227                           |
|                                    |                                |                                | <b>Overall Average</b>         | 227                           |
|                                    |                                |                                | CV                             | 7%                            |

Table 32 Homogeneity Testing of Fe in Sample S1

|    |       | Critical            |        |
|----|-------|---------------------|--------|
|    | Value | (<30% of Target CV) | Result |
| CV | 7%    | 7.5%                | Pass   |

| Filter ID                          | Filter A Result<br>(µg/filter) | Filter B Result<br>(µg/filter) | Filter C Result<br>(µg/filter) | Average Result<br>(µg/filter) |
|------------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|
| Sample 1<br>(Filter 14A, 9B, 10C)  | 0.343                          | 0.320                          | 0.270                          | 0.311                         |
| Sample 2<br>(Filter 25A, 18B, 13C) | 0.310                          | 0.412                          | 0.310                          | 0.344                         |
| Sample 3<br>(Filter 24A, 2B, 20C)  | 0.300                          | 0.382                          | 0.314                          | 0.332                         |
| Sample 4<br>(Filter 19A, 25B, 11C) | 0.333                          | 0.333                          | 0.275                          | 0.314                         |
| Sample 5<br>(Filter 5A, 13B, 7C)   | 0.294                          | 0.360                          | 0.382                          | 0.346                         |
| Sample 6<br>(Filter 3A, 22B, 14C)  | 0.265                          | 0.300                          | 0.350                          | 0.305                         |
|                                    |                                |                                | <b>Overall Average</b>         | 0.325                         |
|                                    |                                |                                | CV                             | 5%                            |

Table 33 Homogeneity Testing of Hg in Sample S1

|    |       | Critical            |        |
|----|-------|---------------------|--------|
|    | Value | (<30% of Target CV) | Result |
| CV | 5%    | 7.5%                | Pass   |

| Filter ID                          | Filter A Result<br>(µg/filter) | Filter B Result<br>(µg/filter) | Filter C Result<br>(µg/filter) | Average Result<br>(µg/filter) |
|------------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|
| Sample 1<br>(Filter 14A, 9B, 10C)  | 1.28                           | 1.10                           | 0.82                           | 1.07                          |
| Sample 2<br>(Filter 25A, 18B, 13C) | 0.96                           | 1.46                           | 0.96                           | 1.13                          |
| Sample 3<br>(Filter 24A, 2B, 20C)  | 0.97                           | 1.28                           | 1.09                           | 1.11                          |
| Sample 4<br>(Filter 19A, 25B, 11C) | 1.00                           | 1.28                           | 1.00                           | 1.09                          |
| Sample 5<br>(Filter 5A, 13B, 7C)   | 0.91                           | 1.30                           | 1.28                           | 1.16                          |
| Sample 6<br>(Filter 3A, 22B, 14C)  | 0.91                           | 0.97                           | 1.20                           | 1.03                          |
|                                    |                                |                                | <b>Overall Average</b>         | 1.10                          |
|                                    |                                |                                | CV                             | 4%                            |

Table 34 Homogeneity Testing of Mn in Sample S1

|    |       | Critical            |        |
|----|-------|---------------------|--------|
|    | Value | (<30% of Target CV) | Result |
| CV | 4%    | 7.5%                | Pass   |

| Filter ID                          | Filter A Result<br>(µg/filter) | Filter B Result<br>(µg/filter) | Filter C Result<br>(µg/filter) | Average Result<br>(µg/filter) |
|------------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|
| Sample 1<br>(Filter 14A, 9B, 10C)  | 1.90                           | 1.70                           | 1.30                           | 1.63                          |
| Sample 2<br>(Filter 25A, 18B, 13C) | 1.50                           | 2.24                           | 1.50                           | 1.75                          |
| Sample 3<br>(Filter 24A, 2B, 20C)  | 1.60                           | 1.90                           | 1.55                           | 1.68                          |
| Sample 4<br>(Filter 19A, 25B, 11C) | 1.55                           | 1.90                           | 1.47                           | 1.64                          |
| Sample 5<br>(Filter 5A, 13B, 7C)   | 1.47                           | 2.20                           | 1.90                           | 1.86                          |
| Sample 6<br>(Filter 3A, 22B, 14C)  | 1.38                           | 1.60                           | 1.80                           | 1.59                          |
|                                    |                                |                                | <b>Overall Average</b>         | 1.69                          |
|                                    |                                |                                | CV                             | 6%                            |

Table 35 Homogeneity Testing of Ni in Sample S1

|    |       | Critical            |        |
|----|-------|---------------------|--------|
|    | Value | (<30% of Target CV) | Result |
| CV | 6%    | 7.5%                | Pass   |

| Filter ID                          | Filter A Result<br>(µg/filter) | Filter B Result<br>(µg/filter) | Filter C Result<br>(µg/filter) | Average Result<br>(µg/filter) |
|------------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|
| Sample 1<br>(Filter 14A, 9B, 10C)  | 76                             | 75                             | 64                             | 72                            |
| Sample 2<br>(Filter 25A, 18B, 13C) | 71                             | 99                             | 79                             | 83                            |
| Sample 3<br>(Filter 24A, 2B, 20C)  | 72                             | 74                             | 62                             | 70                            |
| Sample 4<br>(Filter 19A, 25B, 11C) | 62                             | 84                             | 63                             | 70                            |
| Sample 5<br>(Filter 5A, 13B, 7C)   | 51                             | 94                             | 76                             | 74                            |
| Sample 6<br>(Filter 3A, 22B, 14C)  | 52                             | 79                             | 77                             | 69                            |
|                                    |                                |                                | <b>Overall Average</b>         | 73                            |
|                                    |                                |                                | CV                             | 7%                            |

Table 36 Homogeneity Testing of P in Sample S1

|    |       | Critical            |        |
|----|-------|---------------------|--------|
|    | Value | (<30% of Target CV) | Result |
| CV | 7%    | 7.5%                | Pass   |

| Filter ID                          | Filter A Result<br>(µg/filter) | Filter B Result<br>(µg/filter) | Filter C Result<br>(µg/filter) | Average Result<br>(µg/filter) |
|------------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|
| Sample 1<br>(Filter 14A, 9B, 10C)  | 4.30                           | 3.60                           | 2.90                           | 3.60                          |
| Sample 2<br>(Filter 25A, 18B, 13C) | 3.30                           | 5.10                           | 3.40                           | 3.93                          |
| Sample 3<br>(Filter 24A, 2B, 20C)  | 3.30                           | 4.60                           | 3.60                           | 3.83                          |
| Sample 4<br>(Filter 19A, 25B, 11C) | 3.80                           | 4.30                           | 3.30                           | 3.80                          |
| Sample 5<br>(Filter 5A, 13B, 7C)   | 3.40                           | 4.40                           | 4.50                           | 4.10                          |
| Sample 6<br>(Filter 3A, 22B, 14C)  | 3.10                           | 3.40                           | 4.00                           | 3.50                          |
|                                    |                                |                                | <b>Overall Average</b>         | 3.79                          |
|                                    |                                |                                | CV                             | 6%                            |

Table 37 Homogeneity Testing of Pb in Sample S1

|    |       | Critical            |        |
|----|-------|---------------------|--------|
|    | Value | (<30% of Target CV) | Result |
| CV | 6%    | 7.5%                | Pass   |

| Filter ID                          | Filter A Result<br>(µg/filter) | Filter B Result<br>(µg/filter) | Filter C Result<br>(µg/filter) | Average Result<br>(µg/filter) |
|------------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|
| Sample 1<br>(Filter 14A, 9B, 10C)  | 0.0120                         | 0.0100                         | 0.0080                         | 0.0100                        |
| Sample 2<br>(Filter 25A, 18B, 13C) | 0.0090                         | 0.0140                         | 0.0090                         | 0.0107                        |
| Sample 3<br>(Filter 24A, 2B, 20C)  | 0.0090                         | 0.0130                         | 0.0110                         | 0.0110                        |
| Sample 4<br>(Filter 19A, 25B, 11C) | 0.0110                         | 0.0120                         | 0.0080                         | 0.0103                        |
| Sample 5<br>(Filter 5A, 13B, 7C)   | 0.0090                         | 0.0120                         | 0.0130                         | 0.0113                        |
| Sample 6<br>(Filter 3A, 22B, 14C)  | 0.0080                         | 0.0100                         | 0.0110                         | 0.0097                        |
|                                    |                                |                                | <b>Overall Average</b>         | 0.0105                        |
|                                    |                                |                                | CV                             | 6%                            |

Table 38 Homogeneity Testing of U in Sample S1

|    |       | Critical            |        |
|----|-------|---------------------|--------|
|    | Value | (<30% of Target CV) | Result |
| CV | 6%    | 7.5%                | Pass   |

| Filter ID                          | Filter A ResultFilter B ResultFilter C Result(µg/filter)(µg/filter)(µg/filter) |      | Filter C Result<br>(µg/filter) | Average Result<br>(µg/filter) |
|------------------------------------|--------------------------------------------------------------------------------|------|--------------------------------|-------------------------------|
| Sample 1<br>(Filter 14A, 9B, 10C)  | 3.57                                                                           | 2.90 | 2.20                           | 2.89                          |
| Sample 2<br>(Filter 25A, 18B, 13C) | 2.60                                                                           | 4.36 | 2.60                           | 3.19                          |
| Sample 3<br>(Filter 24A, 2B, 20C)  | 2.60                                                                           | 3.86 | 2.97                           | 3.14                          |
| Sample 4<br>(Filter 19A, 25B, 11C) | 3.07                                                                           | 3.57 | 2.67                           | 3.10                          |
| Sample 5<br>(Filter 5A, 13B, 7C)   | 2.67                                                                           | 3.50 | 3.76                           | 3.31                          |
| Sample 6<br>(Filter 3A, 22B, 14C)  | 2.48 2.60                                                                      |      | 3.10                           | 2.73                          |
|                                    |                                                                                |      | <b>Overall Average</b>         | 3.06                          |
|                                    |                                                                                |      | CV                             | 7%                            |

Table 39Homogeneity Testing of V in Sample S1

|    |       | Critical            |        |
|----|-------|---------------------|--------|
|    | Value | (<30% of Target CV) | Result |
| CV | 7%    | 7.5%                | Pass   |

| Filter ID                          | Filter A Result<br>(µg/filter) | Filter B Result<br>(µg/filter) | Filter C Result<br>(µg/filter) | Average Result<br>(µg/filter) |  |
|------------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|--|
| Sample 1<br>(Filter 14A, 9B, 10C)  | 1.67                           | 1.40                           | 1.10                           | 1.39                          |  |
| Sample 2<br>(Filter 25A, 18B, 13C) | 1.20                           | 1.86                           | 1.20                           | 1.42                          |  |
| Sample 3<br>(Filter 24A, 2B, 20C)  | 1.20                           | 1.58                           | 1.30                           | 1.36                          |  |
| Sample 4<br>(Filter 19A, 25B, 11C) | 1.40                           | 1.58                           | 1.21                           | 1.40                          |  |
| Sample 5<br>(Filter 5A, 13B, 7C)   | 1.30                           | 1.60                           | 1.58                           | 1.49                          |  |
| Sample 6<br>(Filter 3A, 22B, 14C)  | 1.30                           | 1.30                           | 1.60                           | 1.40                          |  |
|                                    |                                |                                | <b>Overall Average</b>         | 1.41                          |  |
|                                    |                                |                                | CV                             | 3%                            |  |

Table 40 Homogeneity Testing of Zn in Sample S1

|    |       | Critical            |        |
|----|-------|---------------------|--------|
|    | Value | (<30% of Target CV) | Result |
| CV | 3%    | 7.5%                | Pass   |

### Sample Analysis for Acid Extractable Elements in Air Filters

The entire filter was carefully placed into a 50 mL graduated polypropylene centrifuge tube. The sample was digested using 3 mL of concentrated nitric acid and 1 mL of concentrated hydrochloric acid on a hot block at  $100^{\circ}C \pm 5^{\circ}C$  for 2 hours. After digestion, each sample was diluted to 40 mL with Milli-Q water and then further diluted as necessary.

The measurement instrument was calibrated using external standards for targeted analytes. A set of quality control samples consisting of blanks, blank matrix spike, duplicates and sample matrix spikes, was carried through the same set of procedures and analysed at the same time as the samples. A summary of the instrument conditions used and the ion/wavelength monitored for each analyte is given in Table 41.

| Table 41 | Instrumental | Technique use | d for Acid | Extractable Elements |  |
|----------|--------------|---------------|------------|----------------------|--|
|          |              |               |            |                      |  |

| Analyte | Instrument | Internal<br>Standard | Reaction/<br>Collision Cell<br>(if applicable) | Cell<br>Mode/Gas<br>(if<br>applicable) | S1Final<br>Dilution<br>Factor | Ion (m/z)/<br>Wavelength<br>(nm) |
|---------|------------|----------------------|------------------------------------------------|----------------------------------------|-------------------------------|----------------------------------|
| Ag      | ICP-MS     | Rh                   | ORS                                            | Не                                     | 200                           | 107 m/z                          |
| Al      | ICP-MS     | Rh                   | NA                                             | NA                                     | 200                           | 27 m/z                           |
| As      | ICP-MS     | Rh                   | ORS                                            | He                                     | 200                           | 75 m/z                           |
| Be      | ICP-MS     | Rh                   | NA                                             | NA                                     | 200                           | 9 m/z                            |
| Cd      | ICP-MS     | Rh                   | NA                                             | NA                                     | 200                           | 111 m/z                          |
| Со      | ICP-MS     | Rh                   | ORS                                            | He                                     | 200                           | 59 m/z                           |
| Cr      | ICP-MS     | Rh                   | ORS                                            | He                                     | 200                           | 52 m/z                           |
| Cu      | ICP-MS     | Rh                   | ORS                                            | He                                     | 200                           | 65 m/z                           |
| Fe      | ICP-MS     | Rh                   | NA                                             | NA                                     | 200                           | 56 m/z                           |
| Hg      | ICP-MS     | Rh                   | NA                                             | NA                                     | 200                           | 201 m/z                          |
| Mn      | ICP-MS     | Rh                   | ORS                                            | He                                     | 200                           | 55 m/z                           |
| Ni      | ICP-MS     | Rh                   | ORS                                            | He                                     | 200                           | 60 m/z                           |
| Analyte | Instrument | Internal<br>Standard | Reaction/<br>Collision Cell<br>(if applicable) | Cell<br>Mode/Gas<br>(if<br>applicable) | S1Final<br>Dilution<br>Factor | Ion (m/z)/<br>Wavelength<br>(nm)   |
|---------|------------|----------------------|------------------------------------------------|----------------------------------------|-------------------------------|------------------------------------|
| Р       | ICP-OES    | Rh                   | NA                                             | NA                                     | 200                           | 213.618 nm                         |
| Pb      | ICP-MS     | Ir                   | NA                                             | NA                                     | 200                           | Average of<br>206, 207, 208<br>m/z |
| Se      | ICP-MS     | Rh                   | ORS                                            | HEHe                                   | 200                           | 78 m/z                             |
| Sn      | ICP-MS     | Rh                   | NA                                             | NA                                     | 200                           | 118 m/z                            |
| U       | ICP-MS     | Ir                   | NA                                             | NA                                     | 200                           | 238 m/z                            |
| V       | ICP-MS     | Rh                   | ORS                                            | Не                                     | 200                           | 51 m/z                             |
| Zn      | ICP-MS     | Rh                   | ORS                                            | Не                                     | 200                           | 66 m/z                             |

 Table 42 Instrumental Technique used for Acid Extractable Elements

#### **APPENDIX 2 – HANDLING AND TRANSPORT STABILITY**

A stability study was carried out to simulate conditions encountered by the study samples during handling and transport. Six filters ('trip' samples) were sent to NMI Victoria and returned to Sydney. The same packing procedure was used for the 'trip samples' as for the test samples sent to participants. The trip samples were analysed upon their return using the same procedure as that used for homogeneity testing.

A student t-test was used to assess whether there is a significant difference between the results from "trip" samples and from "control" samples (those selected for homogeneity analyses). At a significance level of  $\alpha$ =0.05 (95% confidence interval), no significant change in concentration during handling and transport was observed for any of the tests in Sample S1 (Table 43).

| Analyte | t-score | Р    | Is the change in analyte concentration for the trip samples<br>significantly different from the analyte concentration in homogeneity<br>samples at a 95% confidence interval?<br>(P<0.05) |
|---------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ag      | 1.19    | 0.26 | Pass                                                                                                                                                                                      |
| Al      | 0.18    | 0.86 | Pass                                                                                                                                                                                      |
| As      | 0.82    | 0.43 | Pass                                                                                                                                                                                      |
| Be      | 0.18    | 0.86 | Pass                                                                                                                                                                                      |
| Cd      | 0.63    | 0.54 | Pass                                                                                                                                                                                      |
| Со      | 0.077   | 0.94 | Pass                                                                                                                                                                                      |
| Cr      | 0.40    | 0.69 | Pass                                                                                                                                                                                      |
| Cu      | 0.51    | 0.62 | Pass                                                                                                                                                                                      |
| Fe      | 0.76    | 0.46 | Pass                                                                                                                                                                                      |
| Hg      | 1.0     | 0.33 | Pass                                                                                                                                                                                      |
| Mn      | -0.034  | 0.97 | Pass                                                                                                                                                                                      |
| Ni      | -0.31   | 0.38 | Pass                                                                                                                                                                                      |
| Р       | 0.09    | 0.93 | Pass                                                                                                                                                                                      |
| Pb      | 0.60    | 0.56 | Pass                                                                                                                                                                                      |
| Se      | 0.65    | 0.53 | Pass                                                                                                                                                                                      |
| Sn      | 0.059   | 0.95 | Pass                                                                                                                                                                                      |
| U       | 0.59    | 0.57 | Pass                                                                                                                                                                                      |
| V       | 0.47    | 0.65 | Pass                                                                                                                                                                                      |
| Zn      | 0.36    | 0.72 | Pass                                                                                                                                                                                      |

Table 43 Handling and Transport Stability Study Results

#### APPENDIX 3 - ASSIGNED VALUE, Z-SCORE AND E<sub>N</sub> SCORE CALCULATION

The assigned value was calculated as the robust average using the procedure described in 'ISO13258:2015(E), Statistical methods for use in proficiency testing by interlaboratory comparisons – Annex C<sup>5</sup> the uncertainty was estimated as:

$$u_{rob av} = 1.25 * S_{rob av} / \sqrt{p}$$

Equation 4

where:

 $u_{rob av}$ robust average standard uncertainty $S_{rob av}$ robust average standard deviationpnumber of results

The expanded uncertainty  $(U_{rob av})$  is the standard uncertainty multiplied by a coverage factor of 2 at approximately 95% confidence level.

A worked example is set out below in Table 44.

Table 44 Uncertainty of Assigned Value for Cr in Sample S1

| No. results (p) | 11             |
|-----------------|----------------|
| Robust Average  | 5.57 µg/filter |
| Srob av         | 1.30 µg/filter |
| Urob av         | 0.49 µg/filter |
| k               | 2              |
| Urob av         | 0.98 µg/filter |

The assigned value for Cr in Sample S1 is  $5.57 \pm 0.98 \mu g/filter$ 

#### z-Score and En-score

For each participant's result a z-score and  $E_n$ -score are calculated according to Equation 2 and Equation 3 respectively (see page 9).

A worked example is set out below in Table 45.

Table 45 z-Score and  $E_n$ -score for Cr Result Reported by Laboratory 6 in S1

| Cr<br>Result<br>µg/filter | Assigned Value<br>µg/filter | Set Target Standard<br>Deviation                  | z-Score                                     | E <sub>n</sub> -Score                                            |
|---------------------------|-----------------------------|---------------------------------------------------|---------------------------------------------|------------------------------------------------------------------|
| 6.89 ± 0.80               | $5.57\pm0.98$               | 25% as CV<br>or<br>0.25x5.57 =<br>=1.39 μg/filter | $z = \frac{(6.89 - 5.57)}{1.39}$ $z = 0.95$ | $En = \frac{(6.89 - 5.57)}{\sqrt{0.80^2 + 0.98^2}}$ $E_n = 1.04$ |

#### **APPENDIX 4 – ACRONYMS AND ABBREVIATIONS**

| APHA               | American Public Health Association                                      |
|--------------------|-------------------------------------------------------------------------|
| A.V.               | Assigned Value                                                          |
| CRI                | Collision Reaction Interface                                            |
| CRM                | Certified Reference Material                                            |
| CV                 | Coefficient of Variation                                                |
| CVAAS              | Cold Vapour Atomic Absorption Spectrometry                              |
| HEHe               | High Energy He mode                                                     |
| H.V.               | Homogeneity Value                                                       |
| ICP-MS             | Quadrupole - Inductively Coupled Plasma - Mass Spectrometry             |
| ICP-MS/MS          | Quadrupole - Inductively Coupled Plasma - Tandem Mass Spectrometry      |
| ICP-OES-AV         | Inductively Coupled Plasma - Optical Emission Spectrometry- axial view  |
| ICP-OES-RV         | Inductively Coupled Plasma - Optical Emission Spectrometry- radial view |
| Max                | Maximum value in a set of results                                       |
| Md                 | Median                                                                  |
| Min                | Minimum value in a set of results                                       |
| NMI                | National Measurement Institute (of Australia)                           |
| NR                 | Not Reported                                                            |
| NT                 | Not Tested                                                              |
| ORS                | Octopole Reaction System                                                |
| PCV                | Performance Coefficient of Variation                                    |
| RA                 | Robust Average                                                          |
| RM                 | Reference Material                                                      |
| Robust CV          | Robust Coefficient of Variation                                         |
| Robust SD          | Robust Standard Deviation                                               |
| S.V.               | Spiked value or formulated concentration of a PT sample                 |
| SS                 | Spiked Sample                                                           |
| SI                 | The International System of Units                                       |
| s <sup>2</sup> sam | Sampling variance                                                       |
| sa/σ               | Analytical standard deviation divided by the target standard deviation  |
| Target SD          | Target standard deviation                                               |
| σ                  | Target standard deviation                                               |
| UC                 | Universal Cell                                                          |
| USN                | Ultrasonic Nebuliser                                                    |

#### **APPENDIX 5 – PARTICIPANTS RESULTS**

| Lab  | S1A<br>(µg/filter) |             | S1B<br>(µg/filter) |             | S1C<br>(µg/filter) |             | Average<br>(µg/filter) |             |
|------|--------------------|-------------|--------------------|-------------|--------------------|-------------|------------------------|-------------|
| Code | Results            | Uncertainty | Results            | Uncertainty | Results            | Uncertainty | Results                | Uncertainty |
| 1    | 0.087              | 0.017       | 0.087              | 0.017       | 0.085              | 0.017       | 0.086                  | 0.017       |
| 2    | NR                 | NR          | 0.074              | 0.005       | 0.075              | 0.005       | 0.0745                 | 0.005       |
| 3    | <0.5               | NR          | <0.5               | NR          | <0.5               | NR          | <0.5                   | NR          |
| 4    | 0.042              | 0.006       | 0.024              | 0.004       | 0.029              | 0.005       | 0.031                  | 0.005       |
| 5    | <0.5               | NR          | <0.5               | NR          | <0.5               | NR          | <0.5                   | NR          |
| 6    | <0.1               | NR          | < 0.1              | NR          | <0.1               | NR          | <0.1                   | NR          |
| 7    | 0.1                | 0.05        | 0.1                | 0.05        | 0.1                | 0.05        | 0.1                    | 0.05        |
| 8    | <0.5               | NR          | <0.5               | NR          | < 0.5              | NR          | < 0.05                 | NR          |
| 9    | 0.052              | NR          | 0.055              | NR          | 0.059              | NR          | 0.055                  | NR          |
| 10   | 0.05               | 0.01        | 0.05               | 0.01        | 0.05               | 0.01        | 0.05                   | 0.01        |
| 11   | NT                 | NT          | NT                 | NT          | NT                 | NT          | NT                     | NT          |

# Table 46 Ag Results in S1

# Table 47 Al Results in S1

| Lab  | S1A<br>(µg/filter) |             | S1B<br>(µg/filter) |             | S1C<br>(µg/filter) |             | Average<br>(µg/filter) |             |
|------|--------------------|-------------|--------------------|-------------|--------------------|-------------|------------------------|-------------|
| Code | Results            | Uncertainty | Results            | Uncertainty | Results            | Uncertainty | Results                | Uncertainty |
| 1    | 180                | 30          | 160                | 30          | 170                | 30          | 170                    | 30          |
| 2    | NR                 | NR          | 77                 | 3.8         | 87                 | 4           | 82                     | 4.1         |
| 3    | 98                 | 30          | 104                | 30          | 98                 | 30          | 100                    | 30          |
| 4    | 173                | 20          | 119                | 15          | 138                | 18          | 143                    | 18          |
| 5    | 91                 | 30          | 104                | 30          | 100                | 30          | 98                     | 30          |
| 6    | 158                | 15          | 148                | 14          | 143                | 14          | 149                    | 15          |
| 7    | 80                 | 50          | 91                 | 57          | 91                 | 57          | 87                     | 54          |
| 8    | 58                 | 30          | 81                 | 30          | 72                 | 30          | 70                     | 30          |
| 9    | 68                 | NR          | 76                 | NR          | 84                 | NR          | 76                     | NR          |
| 10   | 84.9               | 8.49        | 83.1               | 8.31        | 85.7               | 8.57        | 84.6                   | 8.46        |
| 11   | NT                 | NT          | NT                 | NT          | NT                 | NT          | NT                     | NT          |

#### Table 48 As Results in S1

| Lab  | S1A<br>(µg/filter) |             | S1B<br>(µg/filter) |             | S1C<br>(µg/filter) |             | Average<br>(µg/filter) |             |
|------|--------------------|-------------|--------------------|-------------|--------------------|-------------|------------------------|-------------|
| Coue | Results            | Uncertainty | Results            | Uncertainty | Results            | Uncertainty | Results                | Uncertainty |
| 1    | 7.4                | 1.5         | 7.4                | 1.5         | 7.1                | 1.5         | 7.3                    | 1.5         |
| 2    | NR                 | NR          | 4.9                | 1           | 5.1                | 1           | 5                      | 1           |
| 3    | 6.0                | 2           | 6.8                | 2           | 6.5                | 3           | 6.4                    | 2           |
| 4    | 5.08               | 0.8         | 3.69               | 0.6         | 4.08               | 0.7         | 4.28                   | 0.7         |
| 5    | 5                  | 2           | 5                  | 2           | 5                  | 2           | 5                      | 2           |
| 6    | 6.78               | 0.80        | 6.20               | 0.80        | 6.00               | 0.80        | 6.32                   | 0.80        |
| 7    | 5.6                | 1.4         | 7.0                | 1.8         | 7.3                | 1.8         | 6.5                    | 1.6         |
| 8    | 3                  | 2           | 5                  | 2           | 4                  | 2           | 4                      | 2           |
| 9    | 4.3                | NR          | 5.0                | NR          | 4.7                | NR          | 4.7                    | NR          |
| 10   | 3.71               | 0.371       | 3.58               | 0.358       | 3.85               | 0.385       | 3.71                   | 0.371       |
| 11   | 5.9                | 1.5         | 4.6                | 1.2         | 3.9                | 0.98        | 4.8                    | 1.2         |

# Table 49 Be Results in S1

| Lab  | S1A<br>(µg/filter) |             | S1B<br>(µg/filter) |             | S1C<br>(µg/filter) |             | Average<br>(µg/filter) |             |
|------|--------------------|-------------|--------------------|-------------|--------------------|-------------|------------------------|-------------|
| Coue | Results            | Uncertainty | Results            | Uncertainty | Results            | Uncertainty | Results                | Uncertainty |
| 1    | < 0.05             | NR          | < 0.05             | NR          | < 0.05             | NR          | < 0.05                 | NR          |
| 2    | NR                 | NR          | 0.006              | 0.005       | 0.006              | 0.005       | 0.006                  | 0.005       |
| 3    | < 0.01             | NR          | < 0.01             | NR          | < 0.01             | NR          | < 0.01                 | NR          |
| 4    | 0.003              | 0.001       | 0.003              | 0.001       | 0.004              | 0.001       | 0.003                  | 0.001       |
| 5    | < 0.01             | NR          | < 0.01             | NR          | < 0.01             | NR          | < 0.01                 | NR          |
| 6    | < 0.01             | NR          | < 0.01             | NR          | < 0.01             | NR          | < 0.01                 | NR          |
| 7    | 0.003              | 0.00015     | 0.006              | 0.0003      | 0.006              | 0.0003      | 0.005                  | 0.0003      |
| 8    | < 0.01             | NR          | < 0.01             | NR          | < 0.01             | NR          | < 0.01                 | NR          |
| 9    | < 0.005            | NR          | < 0.005            | NR          | 0.005              | NR          | 0.005                  | NR          |
| 10   | < 0.02             | 0.005       | < 0.02             | 0.005       | < 0.02             | 0.005       | < 0.02                 | 0.005       |
| 11   | NT                 | NT          | NT                 | NT          | NT                 | NT          | NT                     | NT          |

# Table 50 Cd Results in S1

| Lab<br>Coda | S1A<br>(µg/filter) |             | S1B<br>(µg/filter) |             | S1C<br>(µg/filter) |             | Average<br>(µg/filter) |             |
|-------------|--------------------|-------------|--------------------|-------------|--------------------|-------------|------------------------|-------------|
| Coue        | Results            | Uncertainty | Results            | Uncertainty | Results            | Uncertainty | Results                | Uncertainty |
| 1           | 0.52               | 0.10        | 0.52               | 0.10        | 0.48               | 0.10        | 0.51                   | 0.10        |
| 2           | NR                 | NR          | 0.35               | 0.05        | 0.35               | 0.05        | 0.35                   | 0.05        |
| 3           | 0.4                | 0.3         | 0.5                | 0.3         | 0.5                | 0.3         | 0.4                    | 0.3         |
| 4           | 0.44               | 0.06        | 0.31               | 0.05        | 0.33               | 0.05        | 0.36                   | 0.05        |
| 5           | 0.4                | 0.2         | 0.4                | 0.2         | 0.3                | 0.2         | 0.4                    | 0.2         |
| 6           | 0.495              | 0.06        | 0.442              | 0.06        | 0.433              | 0.06        | 0.457                  | 0.06        |
| 7           | 0.38               | 0.019       | 0.45               | 0.023       | 0.47               | 0.024       | 0.43                   | 0.022       |
| 8           | 0.3                | 0.2         | 0.4                | 0.2         | 0.3                | 0.2         | 0.3                    | 0.2         |
| 9           | 0.33               | NR          | 0.35               | NR          | 0.34               | NR          | 0.34                   | NR          |
| 10          | 0.292              | 0.029       | 0.295              | 0.030       | 0.317              | 0.032       | 0.301                  | 0.030       |
| 11          | 0.45               | 0.22        | 0.32               | 0.16        | 0.31               | 0.15        | 0.36                   | 0.17        |

# Table 51 Co Results in S1

| Lab  | S1A<br>(µg/filter) |             | S1B<br>(µg/filter) |             | S1C<br>(µg/filter) |             | Average<br>(µg/filter) |             |
|------|--------------------|-------------|--------------------|-------------|--------------------|-------------|------------------------|-------------|
| Code | Results            | Uncertainty | Results            | Uncertainty | Results            | Uncertainty | Results                | Uncertainty |
| 1    | < 0.05             | NR          | < 0.05             | NR          | < 0.05             | NR          | < 0.05                 | NR          |
| 2    | NR                 | NR          | 0.03               | 0.01        | 0.035              | 0.01        | 0.035                  | 0.01        |
| 3    | <0.5               | NR          | <0.5               | NR          | <0.5               | NR          | < 0.5                  | NR          |
| 4    | 0.036              | 0.005       | 0.040              | 0.005       | 0.028              | 0.004       | 0.035                  | 0.005       |
| 5    | <0.5               | NR          | <0.5               | NR          | <0.5               | NR          | < 0.5                  | NR          |
| 6    | 0.043              | 0.01        | 0.049              | 0.01        | 0.040              | 0.01        | 0.044                  | 0.01        |
| 7    | 0.03               | 0.003       | 0.035              | 0.004       | 0.035              | 0.004       | 0.033                  | 0.003       |
| 8    | <0.5               | NR          | <0.5               | NR          | <0.5               | NR          | < 0.5                  | NR          |
| 9    | 0.024              | NR          | 0.021              | NR          | 0.025              | NR          | 0.023                  | NR          |
| 10   | 0.024              | 0.005       | 0.024              | 0.005       | 0.025              | 0.005       | 0.024                  | 0.005       |
| 11   | NT                 | NT          | NT                 | NT          | NT                 | NT          | NT                     | NT          |

| Lab<br>Codo | S1A<br>(µg/filter) |             | S1B<br>(µg/filter) |             | S1C<br>(µg/filter) |             | Average<br>(µg/filter) |             |
|-------------|--------------------|-------------|--------------------|-------------|--------------------|-------------|------------------------|-------------|
| Coue        | Results            | Uncertainty | Results            | Uncertainty | Results            | Uncertainty | Results                | Uncertainty |
| 1           | 7.7                | 1.5         | 7.7                | 1.5         | 7.4                | 1.5         | 7.6                    | 1.5         |
| 2           | NR                 | NR          | 5.5                | 0.27        | 5.6                | 0.3         | 5.5                    | 0.2775      |
| 3           | 6.1                | 2           | 6.9                | 2           | 6.5                | 2           | 6.5                    | 2           |
| 4           | 5.44               | 0.7         | 3.83               | 0.6         | 4.34               | 0.6         | 4.54                   | 0.6         |
| 5           | 5.4                | 2           | 5.2                | 2           | 5.2                | 2           | 5.3                    | 2           |
| 6           | 7.30               | 0.80        | 6.90               | 0.80        | 6.46               | 0.80        | 6.89                   | 0.80        |
| 7           | 5.6                | 0.70        | 7.0                | 0.88        | 7.2                | 0.90        | 6.6                    | 0.83        |
| 8           | 4                  | 2           | 5.4                | 2           | 4                  | 2           | 4                      | 2           |
| 9           | 4.6                | NR          | 5.1                | NR          | 5.0                | NR          | 4.9                    | NR          |
| 10          | 4.33               | 0.433       | 4.23               | 0.423       | 4.48               | 0.448       | 4.35                   | 0.435       |
| 11          | 5.8                | 3.4         | 5.0                | 2.9         | 4.8                | 2.8         | 5.2                    | 3.0         |

# Table 52 Cr Results in S1

# Table 53 Cu Results in S1

| Lab<br>Code | S1A<br>(µg/filter) |             | S1B<br>(µg/filter) |             | S1C<br>(µg/filter) |             | Average<br>(µg/filter) |             |
|-------------|--------------------|-------------|--------------------|-------------|--------------------|-------------|------------------------|-------------|
| Coue        | Results            | Uncertainty | Results            | Uncertainty | Results            | Uncertainty | Results                | Uncertainty |
| 1           | 5.1                | 1.0         | 5.2                | 1.0         | 5.0                | 1.0         | 5.1                    | 1.0         |
| 2           | NR                 | NR          | 3.2                | 0.16        | 3.5                | 0.2         | 3.4                    | 0.1675      |
| 3           | 3.9                | 1           | 4.9                | 1           | 4.1                | 2           | 4.3                    | 1           |
| 4           | 3.59               | 0.6         | 2.67               | 0.4         | 2.94               | 0.4         | 3.07                   | 0.4         |
| 5           | 4                  | 2           | 3                  | 2           | 3                  | 2           | 3.4                    | 2           |
| 6           | 4.82               | 0.60        | 4.38               | 0.60        | 4.26               | 0.60        | 4.49                   | 0.60        |
| 7           | 3.5                | 0.18        | 3.8                | 0.19        | 4.0                | 0.20        | 3.8                    | 0.19        |
| 8           | 3                  | 1           | 4                  | 1           | 3                  | 1           | 3                      | 1           |
| 9           | 2.9                | NR          | 3.2                | NR          | 3.2                | NR          | 3.1                    | NR          |
| 10          | 2.54               | 0.254       | 2.54               | 0.254       | 2.70               | 0.270       | 2.59                   | 0.259       |
| 11          | 4.3                | 2.2         | 3.7                | 1.9         | 3.4                | 1.8         | 3.8                    | 2.0         |

# Table 54 Fe Results in S1

| Lab  | S1A<br>(µg/filter) |             | S1B<br>(µg/filter) |             | S1C<br>(µg/filter) |             | Average<br>(µg/filter) |             |
|------|--------------------|-------------|--------------------|-------------|--------------------|-------------|------------------------|-------------|
| Code | Results            | Uncertainty | Results            | Uncertainty | Results            | Uncertainty | Results                | Uncertainty |
| 1    | 340                | 70          | 330                | 70          | 320                | 70          | 330                    | 70          |
| 2    | NR                 | NR          | 209                | 10.43       | 215                | 11          | 215                    | 10.75       |
| 3    | 295                | 90          | 307                | 90          | 295                | 90          | 299                    | 90          |
| 4    | 259                | 30          | 182                | 20          | 216                | 25          | 219                    | 25          |
| 5    | 240                | 90          | 260                | 90          | 250                | 90          | 250                    | 90          |
| 6    | 324                | 35          | 295                | 35          | 289                | 35          | 303                    | 35          |
| 7    | 220                | 55          | 270                | 68          | 280                | 70          | 260                    | 65          |
| 8    | 190                | 90          | 260                | 90          | 240                | 90          | 230                    | 90          |
| 9    | 196                | NR          | 210                | NR          | 220                | NR          | 210                    | NR          |
| 10   | 195                | 19.5        | 190                | 19.0        | 204                | 20.4        | 196                    | 19.6        |
| 11   | 160                | 42          | 130                | 34          | 130                | 34          | 140                    | 37          |

| Lab<br>Code | S1A<br>(µg/filter) |             | S1B<br>(µg/filter) |             | S1C<br>(µg/filter) |             | Average<br>(µg/filter) |             |
|-------------|--------------------|-------------|--------------------|-------------|--------------------|-------------|------------------------|-------------|
| Coue        | Results            | Uncertainty | Results            | Uncertainty | Results            | Uncertainty | Results                | Uncertainty |
| 1           | 0.39               | 0.08        | 0.38               | 0.08        | 0.38               | 0.08        | 0.38                   | 0.08        |
| 2           | NR                 | NR          | 0.33               | 0.05        | 0.35               | 0.05        | 0.345                  | 0.05        |
| 3           | 0.33               | 0.2         | 0.35               | 0.2         | 0.34               | 0.2         | 0.34                   | 0.2         |
| 4           | 0.29               | 0.05        | 0.20               | 0.04        | 0.23               | 0.04        | 0.24                   | 0.04        |
| 5           | 0.29               | 0.1         | 0.32               | 0.1         | 0.36               | 0.1         | 0.32                   | 0.1         |
| 6           | 0.337              | 0.04        | 0.320              | 0.04        | 0.305              | 0.04        | 0.321                  | 0.04        |
| 7           | 0.24               | 0.003       | 0.34               | 0.004       | 0.36               | 0.005       | 0.31                   | 0.004       |
| 8           | 0.2                | 0.1         | 0.31               | 0.1         | 0.26               | 0.1         | 0.26                   | 0.1         |
| 9           | 0.24               | NR          | 0.26               | NR          | 0.26               | NR          | 0.25                   | NR          |
| 10          | 0.245              | 0.025       | 0.244              | 0.024       | 0.244              | 0.024       | 0.244                  | 0.024       |
| 11          | NT                 | NT          | NT                 | NT          | NT                 | NT          | NT                     | NT          |

# Table 55 Hg Results in S1

# Table 56 Mn Results in S1

| Lab<br>Coda | S1A<br>(µg/filter) |             | S1B<br>(μg/filter) |             | S1C<br>(µg/filter) |             | Average<br>(µg/filter) |             |
|-------------|--------------------|-------------|--------------------|-------------|--------------------|-------------|------------------------|-------------|
| Coue        | Results            | Uncertainty | Results            | Uncertainty | Results            | Uncertainty | Results                | Uncertainty |
| 1           | 1.5                | 0.3         | 1.4                | 0.3         | 1.4                | 0.3         | 1.4                    | 0.3         |
| 2           | NR                 | NR          | 1.01               | 0.05        | 1.00               | 0.05        | 1                      | 0.05        |
| 3           | 1.1                | 0.3         | 1.2                | 0.4         | 1.1                | 0.3         | 1.1                    | 0.5         |
| 4           | 1.28               | 0.3         | 0.93               | 0.2         | 1.11               | 0.2         | 1.11                   | 0.2         |
| 5           | 1                  | 0.4         | 1                  | 0.4         | 1                  | 0.4         | 1.0                    | 0.4         |
| 6           | 1.41               | 0.15        | 1.30               | 0.15        | 1.25               | 0.15        | 1.32                   | 0.15        |
| 7           | 1.0                | 0.1         | 1.1                | 0.11        | 1.2                | 0.12        | 1.1                    | 0.11        |
| 8           | 1                  | 0.4         | 1                  | 0.4         | 1                  | 0.4         | 1                      | 0.4         |
| 9           | 0.84               | NR          | 0.94               | NR          | 0.97               | NR          | 0.92                   | NR          |
| 10          | 0.936              | 0.094       | 0.931              | 0.093       | 1.00               | 0.100       | 0.956                  | 0.096       |
| 11          | <2.0               | NR          | <2.0               | NR          | <2.0               | NR          | <2.0                   | NR          |

# Table 57 Ni Results in S1

| Lab<br>Code | S1A<br>(µg/filter) |             | S1B<br>(μg/filter) |             | S1C<br>(µg/filter) |             | Average<br>(µg/filter) |             |
|-------------|--------------------|-------------|--------------------|-------------|--------------------|-------------|------------------------|-------------|
| Code        | Results            | Uncertainty | Results            | Uncertainty | Results            | Uncertainty | Results                | Uncertainty |
| 1           | 2.1                | 0.4         | 2.2                | 0.4         | 2.0                | 0.4         | 2.1                    | 0.4         |
| 2           | NR                 | NR          | 1.4                | 0.5         | 1.5                | 0.5         | 1.8                    | 0.5         |
| 3           | 1.7                | 0.5         | 1.8                | 0.6         | 1.8                | 0.5         | 1.7                    | 0.5         |
| 4           | 1.56               | 0.3         | 1.32               | 0.2         | 1.35               | 0.2         | 1.41                   | 0.2         |
| 5           | 2                  | 1           | 1                  | 1           | 1                  | 1           | 1.5                    | 1           |
| 6           | 2.05               | 0.20        | 1.89               | 0.20        | 1.86               | 0.20        | 1.93                   | 0.20        |
| 7           | 1.6                | 0.4         | 2                  | 0.5         | 1.9                | 0.48        | 1.8                    | 0.45        |
| 8           | 1                  | 0.7         | 2                  | 0.7         | 1                  | 0.7         | 1                      | 0.7         |
| 9           | 1.25               | NR          | 1.35               | NR          | 1.34               | NR          | 1.31                   | NR          |
| 10          | 1.22               | 0.122       | 1.26               | 0.126       | 1.31               | 0.131       | 1.26                   | 0.126       |
| 11          | 1.5                | 0.64        | 1.3                | 0.56        | 1.2                | 0.51        | 1.4                    | 0.60        |

# Table 58 P Results in S1

| Lab<br>Code | S1A<br>(µg/filter) |             | S1B<br>(µg/filter) |             | S1C<br>(µg/filter) |             | Average<br>(µg/filter) |             |
|-------------|--------------------|-------------|--------------------|-------------|--------------------|-------------|------------------------|-------------|
| Coue        | Results            | Uncertainty | Results            | Uncertainty | Results            | Uncertainty | Results                | Uncertainty |
| 1           | 82                 | 17          | 94                 | 17          | 83                 | 17          | 86                     | 17          |
| 2           | NR                 | NR          | 59                 | 3           | 58                 | 3           | 59                     | 6           |
| 3           | 73                 | 30          | 86                 | 30          | 83                 | 30          | 81                     | 30          |
| 4           | 64.7               | 8.0         | 51.2               | 6.0         | 74.9               | 8.0         | 63.6                   | 8.0         |
| 5           | 55                 | 30          | 65                 | 30          | 66                 | 30          | 62                     | 30          |
| 6           | 89.5               | 17          | 78.9               | 17          | 72.3               | 17          | 80.2                   | 17          |
| 7           | 62                 | 78          | 80                 | 100         | 82                 | 100         | 75                     | 94          |
| 8           | 62                 | 30          | 79                 | 30          | 71                 | 30          | 71                     | 30          |
| 9           | 54                 | NR          | 65                 | NR          | 69                 | NR          | 63                     | NR          |
| 10          | 46.5               | 4.65        | 51.0               | 5.10        | 57.0               | 5.70        | 51.5                   | 5.15        |
| 11          | NT                 | NT          | NT                 | NT          | NT                 | NT          | NT                     | NT          |

# Table 59 Pb Results in S1

| Lab<br>Code | S1A<br>(µg/filter) |             | S1B<br>(µg/filter) |             | S1C<br>(µg/filter) |             | Average<br>(µg/filter) |             |
|-------------|--------------------|-------------|--------------------|-------------|--------------------|-------------|------------------------|-------------|
| Code        | Results            | Uncertainty | Results            | Uncertainty | Results            | Uncertainty | Results                | Uncertainty |
| 1           | 5.2                | 1.0         | 4.9                | 1.0         | 4.8                | 1.0         | 5.0                    | 1.0         |
| 2           | NR                 | NR          | 3.2                | 0.5         | 3.4                | 0.5         | 3.3                    | 0.5         |
| 3           | 3.7                | 1           | 4.1                | 2           | 3.9                | 1           | 3.9                    | 1           |
| 4           | 3.50               | 0.5         | 2.48               | 0.4         | 2.86               | 0.4         | 2.95                   | 0.4         |
| 5           | 4                  | 2           | 3                  | 2           | 3                  | 2           | 3.4                    | 2           |
| 6           | 4.76               | 0.50        | 4.39               | 0.50        | 4.21               | 0.50        | 4.45                   | 0.50        |
| 7           | 3.5                | 0.44        | 3.8                | 0.48        | 3.9                | 0.49        | 3.7                    | 0.46        |
| 8           | 3                  | 1           | 4                  | 1           | 3                  | 1           | 3                      | 1           |
| 9           | 2.9                | NR          | 3.2                | NR          | 3.3                | NR          | 3.1                    | NR          |
| 10          | 2.79               | 0.279       | 2.75               | 0.275       | 2.95               | 0.295       | 2.83                   | 0.283       |
| 11          | 4.9                | 1.5         | 3.7                | 1.2         | 3.6                | 1.1         | 4.1                    | 1.3         |

# Table 60 Se Results in S1

| Lab  | S1A<br>(µg/filter) |             | S1B<br>(µg/filter) |             | S1C<br>(µg/filter) |             | Average<br>(µg/filter) |             |
|------|--------------------|-------------|--------------------|-------------|--------------------|-------------|------------------------|-------------|
| Code | Results            | Uncertainty | Results            | Uncertainty | Results            | Uncertainty | Results                | Uncertainty |
| 1    | <0.2               | NR          | < 0.2              | NR          | < 0.2              | NR          | < 0.2                  | NR          |
| 2    | NR                 | NR          | < 0.02             | 0.02        | < 0.02             | 0.02        | < 0.02                 | 0.02        |
| 3    | <0.5               | NR          | <0.5               | NR          | <0.5               | NR          | <0.5                   | NR          |
| 4    | 0.084              | 0.01        | 0.078              | 0.01        | 0.083              | 0.01        | 0.081                  | 0.01        |
| 5    | <0.5               | NR          | <0.5               | NR          | 0.5                | NR          | <0.5                   | NR          |
| 6    | < 0.05             | NR          | < 0.05             | NR          | < 0.05             | NR          | < 0.05                 | NR          |
| 7    | 0.12               | 0.12        | 0.24               | 0.24        | 0.30               | 0.3         | 0.22                   | 0.22        |
| 8    | <0.5               | NR          | <0.5               | NR          | <0.5               | NR          | <0.5                   | NR          |
| 9    | < 0.05             | NR          | < 0.05             | NR          | < 0.05             | NR          | < 0.05                 | NR          |
| 10   | 0.012              | 0.007       | 0.011              | 0.007       | 0.013              | 0.007       | 0.012                  | 0.007       |
| 11   | NT                 | NT          | NT                 | NT          | NT                 | NT          | NT                     | NT          |

# Table 61 Sn Results in S1

| Lab<br>Code | S1A<br>(µg/filter) |             | S1B<br>(µg/filter) |             | S1C<br>(µg/filter) |             | Average<br>(µg/filter) |             |
|-------------|--------------------|-------------|--------------------|-------------|--------------------|-------------|------------------------|-------------|
| Coue        | Results            | Uncertainty | Results            | Uncertainty | Results            | Uncertainty | Results                | Uncertainty |
| 1           | 0.19               | 0.04        | 0.20               | 0.04        | 0.17               | 0.04        | 0.19                   | 0.037       |
| 2           | NR                 | NR          | 0.21               | 0.1         | 0.2                | 0.1         | 0.2                    | 0.1         |
| 3           | <2                 | NR          | <2                 | NR          | <2                 | NR          | <2                     | NR          |
| 4           | 0.42               | 0.06        | 0.31               | 0.05        | 0.30               | 0.05        | 0.34                   | 0.05        |
| 5           | <2                 | NR          | <2                 | NR          | <2                 | NR          | <2                     | NR          |
| 6           | 0.233              | 0.04        | 0.203              | 0.04        | 0.206              | 0.04        | 0.214                  | 0.04        |
| 7           | 0.40               | 0.02        | 0.37               | 0.19        | 0.43               | 0.22        | 0.40                   | 0.20        |
| 8           | <2                 | NR          | <2                 | NR          | <2                 | NR          | <2                     | NR          |
| 9           | 0.15               | NR          | 0.15               | NR          | 0.16               | NR          | 0.15                   | NR          |
| 10          | 0.127              | 0.025       | 0.121              | 0.024       | 0.134              | 0.027       | 0.127                  | 0.025       |
| 11          | NT                 | NT          | NT                 | NT          | NT                 | NT          | NT                     | NT          |

# Table 62 U Results in S1

| Lab<br>Codo | S1A<br>(µg/filter) |             | S1B<br>(µg/filter) |             | S1C<br>(µg/filter) |             | Average<br>(µg/filter) |             |
|-------------|--------------------|-------------|--------------------|-------------|--------------------|-------------|------------------------|-------------|
| Coue        | Results            | Uncertainty | Results            | Uncertainty | Results            | Uncertainty | Results                | Uncertainty |
| 1           | < 0.05             | NR          | < 0.05             | NR          | < 0.05             | NR          | < 0.05                 | NR          |
| 2           | NR                 | NR          | < 0.05             | 0.05        | < 0.05             | 0.05        | < 0.05                 | 0.05        |
| 3           | <0.5               | NR          | <0.5               | NR          | < 0.5              | NR          | <0.5                   | NR          |
| 4           | 0.009              | 0.002       | 0.006              | 0.001       | 0.007              | 0.001       | 0.007                  | 0.001       |
| 5           | <0.5               | NR          | <0.5               | NR          | < 0.5              | NR          | <0.5                   | NR          |
| 6           | 0.014              | 0.002       | 0.013              | 0.002       | 0.012              | 0.002       | 0.013                  | 0.002       |
| 7           | 0.009              | 0.0002      | 0.011              | 0.0002      | 0.011              | 0.0002      | 0.01                   | 0.0003      |
| 8           | <0.5               | NR          | <0.5               | NR          | < 0.5              | NR          | <0.5                   | NR          |
| 9           | 0.0078             | NR          | 0.0086             | NR          | 0.0097             | NR          | 0.0087                 | NR          |
| 10          | 0.009              | 0.007       | 0.009              | 0.007       | 0.012              | 0.007       | 0.010                  | 0.007       |
| 11          | NT                 | NT          | NT                 | NT          | NT                 | NT          | NT                     | NT          |

# Table 63 V Results in S1

| Lab<br>Code | S1A<br>(µg/filter) |             | S1B<br>(µg/filter) |             | S1C<br>(µg/filter) |             | Average<br>(µg/filter) |             |
|-------------|--------------------|-------------|--------------------|-------------|--------------------|-------------|------------------------|-------------|
| Code        | Results            | Uncertainty | Results            | Uncertainty | Results            | Uncertainty | Results                | Uncertainty |
| 1           | 3.8                | 0.7         | 3.7                | 0.7         | 3.6                | 0.7         | 3.7                    | 0.7         |
| 2           | NR                 | NR          | 2.5                | 0.13        | 2.5                | 0.13        | 2.5                    | 0.07        |
| 3           | 3.0                | 1           | 3.3                | 1           | 3.1                | 1           | 3.1                    | 1           |
| 4           | 2.43               | 0.4         | 1.76               | 0.3         | 1.98               | 0.4         | 2.06                   | 0.4         |
| 5           | 3                  | 1           | 2                  | 1           | 2                  | 1           | 2.5                    | 1           |
| 6           | 3.52               | 0.44        | 3.23               | 0.44        | 3.08               | 0.44        | 3.28                   | 0.44        |
| 7           | 2.5                | 0.63        | 3.1                | 0.78        | 3.3                | 0.41        | 3.0                    | 0.19        |
| 8           | 2                  | 0.8         | 2                  | 0.8         | 2                  | 0.8         | 2                      | 0.8         |
| 9           | 2.1                | NR          | 2.3                | NR          | 2.3                | NR          | 2.2                    | NR          |
| 10          | 1.89               | 0.189       | 1.81               | 0.181       | 1.95               | 0.195       | 1.88                   | 0.188       |
| 11          | NT                 | NT          | NT                 | NT          | NT                 | NT          | NT                     | NT          |

# Table 64 Zn Results in S1

| Lab<br>Code | S1A<br>(µg/filter) |             | S1B<br>(µg/filter) |             | S1C<br>(µg/filter) |             | Average<br>(µg/filter) |             |
|-------------|--------------------|-------------|--------------------|-------------|--------------------|-------------|------------------------|-------------|
| Code        | Results            | Uncertainty | Results            | Uncertainty | Results            | Uncertainty | Results                | Uncertainty |
| 1           | 1.9                | 0.4         | 1.8                | 0.4         | 1.8                | 0.4         | 1.8                    | 0.4         |
| 2           | NR                 | NR          | 1.3                | 0.06        | 1.5                | 0.08        | 1.4                    | 0.07        |
| 3           | <5                 | NR          | <5                 | NR          | <5                 | NR          | <5                     | NR          |
| 4           | 1.43               | 0.2         | 1.12               | 0.2         | 1.29               | 0.2         | 1.28                   | 0.2         |
| 5           | <5                 | NR          | <5                 | NR          | <5                 | NR          | <5                     | NR          |
| 6           | 1.90               | 0.20        | 1.70               | 0.20        | 1.82               | 0.20        | 1.81                   | 0.20        |
| 7           | 1.7                | 0.43        | 1.7                | 0.43        | 1.7                | 0.43        | 1.7                    | 0.43        |
| 8           | <5                 | NR          | <5                 | NR          | <5                 | NR          | <5                     | NR          |
| 9           | 1.02               | NR          | 1.15               | NR          | 1.14               | NR          | 1.10                   | NR          |
| 10          | 0.978              | 0.098       | 0.990              | 0.099       | 1.02               | 0.102       | 0.996                  | 0.099       |
| 11          | 1.2                | 0.41        | 1.1                | 0.37        | 1.0                | 0.34        | 1.1                    | 0.37        |

#### **APPENDIX 6 - INSTRUMENT DETAILS**

| Laboratory<br>Code | Instrument | Internal<br>standard | Reaction Cell | Reaction Gas | S1 Final<br>Dilution<br>Factor | Wavelength (nm)/<br>Ion(m/z)/<br>Absorbance(nm) |
|--------------------|------------|----------------------|---------------|--------------|--------------------------------|-------------------------------------------------|
| 1                  | ICP-MS     | Rh                   | ORS           | He           | 200                            | Ag107                                           |
| 2                  |            |                      |               |              |                                |                                                 |
| 3                  | ICP-MS     | Rh                   |               |              | 500                            | 107                                             |
| 4                  | ICP-MS     | Rh                   | NA            | NA           | 1620                           | 109                                             |
| 5                  | ICP-MS     | Rh                   |               |              | 500                            | 107                                             |
| 6                  | ICP-MS     | Rh 103               | NA            | He           | 100                            | 107                                             |
| 7                  | GFAAS      |                      |               |              | 50                             |                                                 |
| 8                  | ICP-MS     | In                   | ORS           |              | 250                            | 107                                             |
| 9                  | ICP-MS     | Rh                   | UC            | He           | 50                             | 109                                             |
| 10                 | ICP-MS     | Rh                   | CRI           |              | 1                              |                                                 |
| 11                 |            |                      |               |              |                                |                                                 |

# Table 65 Instrument Conditions Ag

#### Table 66 Instrument Conditions Al

| Laboratory<br>Code | Instrument | Internal standard | Reaction Cell | Reaction Gas | S1 Final<br>Dilution<br>Factor | Wavelength (nm)/<br>Ion(m/z)/<br>Absorbance(nm) |
|--------------------|------------|-------------------|---------------|--------------|--------------------------------|-------------------------------------------------|
| 1                  | ICP-OES-AV | Yttrium           | NA            |              | 200                            | Al167.019                                       |
| 2                  |            |                   |               |              |                                |                                                 |
| 3                  | ICP-OES-AV | Lu                |               |              | 50                             | 396.152                                         |
| 4                  | ICP-MS     | Sc                | NA            | NA           | 1620                           | 27                                              |
| 5                  | ICP-OES-AV | Lu                |               |              | 50                             | 396.152                                         |
| 6                  | ICP-OES-AV | Lu 219.556        | ORS           | NA           | 100                            | Al 237.312                                      |
| 7                  | ICP-OES-AV | Yb                |               |              | 50                             | 396.152nm                                       |
| 8                  | ICP-OES-AV | Lu                |               |              | 25                             | 396.152                                         |
| 9                  | ICP-MS     | Sc                | UC            | He           | 50                             | 27                                              |
| 10                 | ICP-MS     | Sc                | CRI           |              | 1                              |                                                 |
| 11                 |            |                   |               |              |                                |                                                 |

#### Table 67 Instrument Conditions As

| Laboratory<br>Code | Instrument  | Internal standard | Reaction Cell | Reaction Gas | S1 Final<br>Dilution<br>Factor | Wavelength (nm)/<br>Ion(m/z)/<br>Absorbance(nm) |
|--------------------|-------------|-------------------|---------------|--------------|--------------------------------|-------------------------------------------------|
| 1                  | ICP-MS      | Rh                | ORS           | He           | 200                            | As75                                            |
| 2                  |             |                   |               |              |                                |                                                 |
| 3                  | ICP-MS      | Rh                | DRC           | He           | 500                            | 75                                              |
| 4                  | ICP-MS      | Ge                | UC            | He           | 1620                           | 75                                              |
| 5                  | ICP-MS      | Ge                | DRC           | He           | 500                            | 75                                              |
| 6                  | ICP-MS      | Rh 103            | ORS           | He           | 100                            | 75                                              |
| 7                  | ICP-OES-USN | Yb                |               |              | 50                             | 188.98nm                                        |
| 8                  | ICP-MS      | Ge                | ORS           | He           | 250                            | 75                                              |
| 9                  | ICP-MS      | Te                | UC            | He           | 50                             | 75                                              |
| 10                 | ICP-MS      | Rh                | CRI           | HeHe         | 1                              |                                                 |
| 11                 | GFAAS       |                   |               |              | 20                             | 193.7                                           |

| Laboratory<br>Code | Instrument  | Internal standard | Reaction Cell | Reaction Gas | S1 Final<br>Dilution<br>Factor | Wavelength (nm)/<br>Ion(m/z)/<br>Absorbance(nm) |
|--------------------|-------------|-------------------|---------------|--------------|--------------------------------|-------------------------------------------------|
| 1                  | ICP-MS      | Rh                | NA            |              | 200                            | Be9                                             |
| 2                  |             |                   |               |              |                                |                                                 |
| 3                  | ICP-MS      | Li                |               |              | 500                            | 9                                               |
| 4                  | ICP-MS      | Sc                | NA            | NA           | 1620                           | 9                                               |
| 5                  | ICP-MS      | Li6               |               |              | 500                            | 9                                               |
| 6                  | ICP-MS      | Sc 45             | ORS           | He           | 100                            | 9                                               |
| 7                  | ICP-OES-USN | Yb                |               |              | 50                             | 313.042nm                                       |
| 8                  | ICP-MS      | Ge                | ORS           |              | 250                            | 9                                               |
| 9                  | ICP-MS      | Sc                | UC            | He           | 50                             | 9                                               |
| 10                 | ICP-MS      | Sc                | CRI           |              | 1                              |                                                 |
| 11                 |             |                   |               |              |                                |                                                 |

#### Table 68 Instrument Conditions Be

# Table 69 Instrument Conditions Cd

| Laboratory<br>Code | Instrument  | Internal standard | Reaction Cell | Reaction Gas | S1 Final<br>Dilution<br>Factor | Wavelength (nm)/<br>Ion(m/z)/<br>Absorbance(nm) |
|--------------------|-------------|-------------------|---------------|--------------|--------------------------------|-------------------------------------------------|
| 1                  | ICP-MS      | Rh                | ORS           | He           | 200                            | Cd111                                           |
| 2                  |             |                   |               |              |                                |                                                 |
| 3                  | ICP-MS      | Rh                | DRC           | He           | 500                            | 111                                             |
| 4                  | ICP-MS      | Rh                | NA            | NA           | 1620                           | 111                                             |
| 5                  | ICP-MS      | In                | DRC           | He           | 500                            | 111                                             |
| 6                  | ICP-MS      | Rh 103            | ORS           | He           | 100                            | 111                                             |
| 7                  | ICP-OES-USN | Yb                |               |              | 50                             | 214.439nm                                       |
| 8                  | ICP-MS      | In                | ORS           | He           | 250                            | 111                                             |
| 9                  | ICP-MS      | Rh                | UC            | He           | 50                             | 111                                             |
| 10                 | ICP-MS      | Rh                | CRI           | He           | 1                              |                                                 |
| 11                 | GFAAS       |                   |               |              | 20                             | 228.8                                           |

# Table 70 Instrument Conditions Co

| Laboratory<br>Code | Instrument  | Internal<br>standard | Reaction Cell | Reaction Gas | S1 Final<br>Dilution<br>Factor | Wavelength (nm)/<br>Ion(m/z)/<br>Absorbance(nm) |
|--------------------|-------------|----------------------|---------------|--------------|--------------------------------|-------------------------------------------------|
| 1                  | ICP-MS      | Rh                   | ORS           | He           | 200                            | Co59                                            |
| 2                  |             |                      |               |              |                                |                                                 |
| 3                  | ICP-MS      | Ge                   | DRC           | He           | 500                            | 59                                              |
| 4                  | ICP-MS      | Ge                   | UC            | Не           | 1620                           | 59                                              |
| 5                  | ICP-MS      | Ge                   | DRC           | He           | 500                            | 59                                              |
| 6                  | ICP-MS      | Rh 103               | ORS           | Не           | 100                            | 59                                              |
| 7                  | ICP-OES-USN | Yb                   |               |              | 50                             | 230.786nm                                       |
| 8                  | ICP-MS      | Ge                   | ORS           | Не           | 250                            | 59                                              |
| 9                  | ICP-MS      | Ga                   | UC            | He           | 50                             | 59                                              |
| 10                 | ICP-MS      | Rh                   | CRI           | He           | 1                              |                                                 |
| 11                 |             |                      |               |              |                                |                                                 |

| Laboratory<br>Code | Instrument  | Internal standard | Reaction Cell | Reaction Gas | S1 Final<br>Dilution<br>Factor | Wavelength (nm)/<br>Ion(m/z)/<br>Absorbance(nm) |
|--------------------|-------------|-------------------|---------------|--------------|--------------------------------|-------------------------------------------------|
| 1                  | ICP-MS      | Rh                | ORS           | He           | 200                            | Cr52                                            |
| 2                  |             |                   |               |              |                                |                                                 |
| 3                  | ICP-MS      | Ge                | DRC           | He           | 500                            | 52                                              |
| 4                  | ICP-MS      | Sc                | UC            | He           | 1620                           | 52                                              |
| 5                  | ICP-MS      | Ge                | DRC           | He           | 500                            | 52                                              |
| 6                  | ICP-MS      | Rh 103            | ORS           | He           | 100                            | 52                                              |
| 7                  | ICP-OES-USN | Yb                |               |              | 50                             | 267.716nm                                       |
| 8                  | ICP-MS      | Ge                | ORS           | He           | 250                            | 52                                              |
| 9                  | ICP-MS      | Sc                | UC            | He           | 50                             | 52                                              |
| 10                 | ICP-MS      | Rh                | CRI           | He           | 1                              |                                                 |
| 11                 | ICP-OES-AV  |                   |               |              | 20                             | 267.716                                         |

#### Table 71 Instrument Conditions Cr

# Table 72 Instrument Conditions Cu

| Laboratory<br>Code | Instrument  | Internal standard | Reaction Cell | Reaction Gas | S1 Final<br>Dilution<br>Factor | Wavelength (nm)/<br>Ion(m/z)/<br>Absorbance(nm) |
|--------------------|-------------|-------------------|---------------|--------------|--------------------------------|-------------------------------------------------|
| 1                  | ICP-MS      | Rh                | ORS           | He           | 200                            | Cu65                                            |
| 2                  |             |                   |               |              |                                |                                                 |
| 3                  | ICP-MS      | Ge                | DRC           | He           | 500                            | 65                                              |
| 4                  | ICP-MS      | Ge                | UC            | He           | 1620                           | 63                                              |
| 5                  | ICP-MS      | Ge                | DRC           | He           | 500                            | 63                                              |
| 6                  | ICP-MS      | Rh 103            | ORS           | He           | 100                            | 63                                              |
| 7                  | ICP-OES-USN | Yb                |               |              | 50                             | 327.395nm                                       |
| 8                  | ICP-MS      | Ge                | ORS           | He           | 250                            | 63                                              |
| 9                  | ICP-MS      | Ga                | UC            | He           | 50                             | 63                                              |
| 10                 | ICP-MS      | Rh                | CRI           | He           | 1                              |                                                 |
| 11                 | ICP-OES-AV  |                   |               |              | 20                             | 324.752                                         |

# Table 73 Instrument Conditions Fe

| Laboratory<br>Code | Instrument | Internal standard | Reaction Cell | Reaction Gas | S1 Final<br>Dilution<br>Factor | Wavelength (nm)/<br>Ion(m/z)/<br>Absorbance(nm) |
|--------------------|------------|-------------------|---------------|--------------|--------------------------------|-------------------------------------------------|
| 1                  | ICP-OES-AV | Yttrium           | NA            |              | 200                            | Fe238.204                                       |
| 2                  |            |                   |               |              |                                |                                                 |
| 3                  | ICP-OES-AV | Lu                |               |              | 50                             | 238.204                                         |
| 4                  | ICP-MS     | Sc                | UC            | Не           | 1620                           | 56                                              |
| 5                  | ICP-OES-AV | Lu                |               |              | 50                             | 234.35                                          |
| 6                  | ICP-MS     | Rh 103            | ORS           | Не           | 100                            | 56                                              |
| 7                  | ICP-OES-AV | Yb                |               |              | 50                             | 238.204nm                                       |
| 8                  | ICP-OES-AV | Lu                |               |              | 25                             | 234.35                                          |
| 9                  | ICP-MS     | Sc                | UC            | He           | 50                             | 56                                              |
| 10                 | ICP-MS     | Sc                | CRI           | HeHe         | 1                              |                                                 |
| 11                 | ICP-OES-RV |                   |               |              | 20                             | 239.562                                         |

| Laboratory<br>Code | Instrument | Internal<br>standard | Reaction Cell | Reaction Gas | S1 Final<br>Dilution<br>Factor | Wavelength (nm)/<br>Ion(m/z)/<br>Absorbance(nm) |
|--------------------|------------|----------------------|---------------|--------------|--------------------------------|-------------------------------------------------|
| 1                  | ICP-MS     | Rh                   | ORS           | He           | 200                            | Hg202                                           |
| 2                  |            |                      |               |              |                                |                                                 |
| 3                  | CVAAS      |                      |               |              | 250                            | 253.7                                           |
| 4                  | ICP-MS     | Ir                   | NA            | NA           | 1620                           | 201                                             |
| 5                  | CVAAS      |                      |               |              | 500                            | 253.7                                           |
| 6                  | ICP-MS     | Ir 193               | ORS           | Не           | 100                            | 202                                             |
| 7                  | CVAAS      | SnCl2                |               |              | 50                             |                                                 |
| 8                  | CVAAS      |                      | ORS           |              | 250                            |                                                 |
| 9                  | ICP-MS     | Tb                   | UC            | He           | 50                             | 201                                             |
| 10                 | ICP-MS     | Ir                   | CRI           | He           | 1                              |                                                 |
| 11                 |            |                      |               |              |                                |                                                 |

# Table 74 Instrument Conditions Hg

# Table 75 Instrument Conditions Mn

| Laboratory<br>Code | Instrument  | Internal standard | Reaction Cell | Reaction Gas | S1 Final<br>Dilution<br>Factor | Wavelength (nm)/<br>Ion(m/z)/<br>Absorbance(nm) |
|--------------------|-------------|-------------------|---------------|--------------|--------------------------------|-------------------------------------------------|
| 1                  | ICP-OES-AV  | Yttrium           | NA            |              | 200                            | Mn257.61                                        |
| 2                  |             |                   |               |              |                                |                                                 |
| 3                  | ICP-MS      | Ge                | DRC           | He           | 500                            | 55                                              |
| 4                  | ICP-MS      | Sc                | UC            | He           | 1620                           | 55                                              |
| 5                  | ICP-MS      | Ge                | DRC           | He           | 500                            | 55                                              |
| 6                  | ICP-MS      | Rh 103            | ORS           | He           | 100                            | 55                                              |
| 7                  | ICP-OES-USN | Yb                |               |              | 50                             | 260.568nm                                       |
| 8                  | ICP-MS      | Ge                | ORS           | He           | 250                            | 55                                              |
| 9                  | ICP-MS      | Sc                | UC            | He           | 50                             | 55                                              |
| 10                 | ICP-MS      | Sc                | CRI           | He           | 1                              |                                                 |
| 11                 | ICP-OES-RV  |                   |               |              | 20                             | 257.61                                          |

# Table 76 Instrument Conditions Ni

| Laboratory<br>Code | Instrument  | Internal standard | Reaction Cell | Reaction Gas | S1 Final<br>Dilution<br>Factor | Wavelength (nm)/<br>Ion(m/z)/<br>Absorbance(nm) |
|--------------------|-------------|-------------------|---------------|--------------|--------------------------------|-------------------------------------------------|
| 1                  | ICP-MS      | Rh                | ORS           | He           | 200                            | Ni60                                            |
| 2                  |             |                   |               |              |                                |                                                 |
| 3                  | ICP-MS      | Ge                | DRC           | He           | 500                            | 60                                              |
| 4                  | ICP-MS      | Ge                | UC            | He           | 1620                           | 60                                              |
| 5                  | ICP-MS      | Ge                | DRC           | He           | 500                            | 60                                              |
| 6                  | ICP-MS      | Rh 103            | ORS           | He           | 100                            | 60                                              |
| 7                  | ICP-OES-USN | Yb                |               |              | 50                             | 231.604nm                                       |
| 8                  | ICP-MS      | Ge                | ORS           | He           | 250                            | 60                                              |
| 9                  | ICP-MS      | Ga                | UC            | He           | 50                             | 60                                              |
| 10                 | ICP-MS      | Rh                | CRI           | He           | 1                              |                                                 |
| 11                 | ICP-OES-AV  |                   |               |              | 20                             | 231.604                                         |

| Laboratory<br>Code | Instrument | Internal standard | Reaction Cell | Reaction Gas | S1 Final<br>Dilution<br>Factor | Wavelength (nm)/<br>Ion(m/z)/<br>Absorbance(nm) |
|--------------------|------------|-------------------|---------------|--------------|--------------------------------|-------------------------------------------------|
| 1                  | ICP-OES-AV | Yttrium           | NA            |              | 200                            | P213.618                                        |
| 2                  |            |                   |               |              |                                |                                                 |
| 3                  | ICP-OES-AV | Lu                |               |              | 50                             | 213.618                                         |
| 4                  | ICP-MS     | Sc                | UC            | He           | 1620                           | 31                                              |
| 5                  | ICP-OES-AV | Lu                |               |              | 50                             | 213.618                                         |
| 6                  | ICP-OES-AV | N/A               | NA            | NA           | 100                            | P185.878                                        |
| 7                  | ICP-OES-AV | Yb                |               |              | 50                             | 177.434nm                                       |
| 8                  | ICP-OES-AV | Lu                |               |              | 25                             | 213.618                                         |
| 9                  | ICP-MS     | Sc                | UC            | He           | 50                             | 31                                              |
| 10                 | ICP-OES-AV |                   |               |              | 1                              |                                                 |
| 11                 |            |                   |               |              |                                |                                                 |

# Table 77 Instrument Conditions P

# Table 78 Instrument Conditions Pb

| Laboratory<br>Code | Instrument  | Internal standard | Reaction Cell | Reaction Gas | S1 Final<br>Dilution<br>Factor | Wavelength (nm)/<br>Ion(m/z)/<br>Absorbance(nm) |
|--------------------|-------------|-------------------|---------------|--------------|--------------------------------|-------------------------------------------------|
| 1                  | ICP-MS      | Rh                | ORS           | He           | 200                            | Pb207                                           |
| 2                  |             |                   |               |              |                                |                                                 |
| 3                  | ICP-MS      | Lu                |               |              | 500                            | 208                                             |
| 4                  | ICP-MS      | Ir                | NA            | NA           | 1620                           | 206+207+208                                     |
| 5                  | ICP-MS      | Lu                |               |              | 500                            | 208                                             |
| 6                  | ICP-MS      | Ir 193            | ORS           | Не           | 100                            | 208                                             |
| 7                  | ICP-OES-USN | Yb                |               |              | 50                             | 220.353nm                                       |
| 8                  | ICP-MS      | Lu                | ORS           |              | 250                            | 208                                             |
| 9                  | ICP-MS      | Tb                | UC            | He           | 50                             | 206, 207, 208                                   |
| 10                 | ICP-MS      | Ir                | CRI           |              | 1                              |                                                 |
| 11                 | GFAAS       |                   |               |              | 20                             | 283.3                                           |

# Table 79 Instrument Conditions Se

| Laboratory<br>Code | Instrument  | Internal standard | Reaction Cell | Reaction Gas | S1 Final<br>Dilution<br>Factor | Wavelength (nm)/<br>Ion(m/z)/<br>Absorbance(nm) |
|--------------------|-------------|-------------------|---------------|--------------|--------------------------------|-------------------------------------------------|
| 1                  | ICP-MS      | Rh                | ORS           | HEHe         | 200                            | Se78                                            |
| 2                  |             |                   |               |              |                                |                                                 |
| 3                  | ICP-MS      | Rh                | DRC           | H2           | 500                            | 78                                              |
| 4                  | ICP-MS      | Rh                | NA            | NA           | 1620                           | 82                                              |
| 5                  | ICP-MS      | Ge                | DRC           | Не           | 500                            | 78                                              |
| 6                  | ICP-MS      | Rh 103            | ORS           | Не           | 100                            | 78                                              |
| 7                  | ICP-OES-USN | Yb                |               |              | 50                             | 196.026nm                                       |
| 8                  | ICP-MS      | Ge                | ORS           | H2           | 250                            | 78                                              |
| 9                  | ICP-MS      | Te                | UC            | He           | 50                             | 82                                              |
| 10                 | ICP-MS      | Rh                | CRI           | HeHe         | 1                              |                                                 |
| 11                 |             |                   |               |              |                                |                                                 |

| Laboratory<br>Code | Instrument  | Internal standard | Reaction Cell | Reaction Gas | S1 Final<br>Dilution<br>Factor | Wavelength (nm)/<br>Ion(m/z)/<br>Absorbance(nm) |
|--------------------|-------------|-------------------|---------------|--------------|--------------------------------|-------------------------------------------------|
| 1                  | ICP-MS      | Rh                | ORS           | He           | 200                            | Sn118                                           |
| 2                  |             |                   |               |              |                                |                                                 |
| 3                  | ICP-MS      | Rh                | DRC           | He           | 500                            | 118                                             |
| 4                  | ICP-MS      | Rh                | NA            | NA           | 1620                           | 118                                             |
| 5                  | ICP-MS      | In                | DRC           | He           | 500                            | 118                                             |
| 6                  | ICP-MS      | Rh 103            | ORS           | He           | 100                            | 118                                             |
| 7                  | ICP-OES-USN | Yb                |               |              | 50                             | 189.925nm                                       |
| 8                  | ICP-MS      | In                | ORS           | He           | 250                            | 118                                             |
| 9                  | ICP-MS      | Rh                | UC            | He           | 50                             | 120                                             |
| 10                 | ICP-MS      | Rh                | CRI           | He           | 1                              |                                                 |
| 11                 |             |                   |               |              |                                |                                                 |

#### Table 80 Instrument Conditions Sn

# Table 81 Instrument Conditions U

| Laboratory<br>Code | Instrument | Internal<br>standard | Reaction Cell | Reaction Gas | S1 Final<br>Dilution<br>Factor | Wavelength (nm)/<br>Ion(m/z)/<br>Absorbance(nm) |
|--------------------|------------|----------------------|---------------|--------------|--------------------------------|-------------------------------------------------|
| 1                  | ICP-MS     | Rh                   | ORS           | He           | 200                            | U238                                            |
| 2                  |            |                      |               |              |                                |                                                 |
| 3                  | ICP-MS     | Lu                   |               |              | 500                            | 238                                             |
| 4                  | ICP-MS     | Ir                   | NA            | NA           | 1620                           | 238                                             |
| 5                  | ICP-MS     | Lu                   |               |              | 500                            | 238                                             |
| 6                  | ICP-MS     | Ir 193               | ORS           | He           | 100                            | 238                                             |
| 7                  | ICP-MS/MS  | Ir                   | ORS           |              | 500                            | 238m/z                                          |
| 8                  | ICP-MS     | Lu                   | ORS           |              | 250                            | 238                                             |
| 9                  | ICP-MS     | Tb                   | UC            | He           | 50                             | 238                                             |
| 10                 | ICP-MS     | Ir                   | CRI           |              | 1                              |                                                 |
| 11                 |            |                      |               |              |                                |                                                 |

#### Table 82 Instrument Conditions V

| Laboratory<br>Code | Instrument | Internal standard | Reaction Cell | Reaction Gas | S1 Final<br>Dilution<br>Factor | Wavelength (nm)/<br>Ion(m/z)/<br>Absorbance(nm) |
|--------------------|------------|-------------------|---------------|--------------|--------------------------------|-------------------------------------------------|
| 1                  | ICP-MS     | Rh                | ORS           | He           | 200                            | V51                                             |
| 2                  |            |                   |               |              |                                |                                                 |
| 3                  | ICP-MS     | Ge                | DRC           | Не           | 500                            | 51                                              |
| 4                  | ICP-MS     | Sc                | UC            | Не           | 1620                           | 51                                              |
| 5                  | ICP-MS     | Ge                | DRC           | Не           | 500                            | 51                                              |
| 6                  | ICP-OES-AV | Rh 103            | NA            | NA           | 100                            | V292.401                                        |
| 7                  | ICP-OES-AV | Yb                |               |              | 50                             | 292.401nm                                       |
| 8                  | ICP-MS     | Ge                | ORS           | Не           | 250                            | 51                                              |
| 9                  | ICP-MS     | Sc                | UC            | He           | 50                             | 51                                              |
| 10                 | ICP-MS     | Sc                | CRI           | He           | 1                              |                                                 |
| 11                 |            |                   |               |              |                                |                                                 |

| Laboratory<br>Code | Instrument | Internal standard | Reaction Cell | Reaction Gas | S1 Final<br>Dilution<br>Factor | Wavelength (nm)/<br>Ion(m/z)/<br>Absorbance(nm) |
|--------------------|------------|-------------------|---------------|--------------|--------------------------------|-------------------------------------------------|
| 1                  | ICP-OES-AV | Yttrium           | NA            |              | 200                            | Zn213.857                                       |
| 2                  |            |                   |               |              |                                |                                                 |
| 3                  | ICP-MS     | Ge                | DRC           | He           | 500                            | 66                                              |
| 4                  | ICP-MS     | Ge                | UC            | He           | 1620                           | 66                                              |
| 5                  | ICP-MS     | Ge                | DRC           | He           | 500                            | 66                                              |
| 6                  | ICP-MS     | Rh 103            | ORS           | He           | 100                            | 66                                              |
| 7                  | ICP-OES-AV | Yb                |               |              | 50                             | 213.857nm                                       |
| 8                  | ICP-MS     | Ge                | ORS           | He           | 250                            | 66                                              |
| 9                  | ICP-MS     | Те                | UC            | He           | 50                             | 66                                              |
| 10                 | ICP-MS     | Rh                | CRI           | He           | 1                              |                                                 |
| 11                 | ICP-OES-RV |                   |               |              | 20                             | 206.2                                           |

# Table 83 Instrument Conditions Zn

# **END OF REPORT**